Upload 4 files
Browse files
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title: Segment
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Segment-Anything-Video
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.19.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
|
3 |
+
|
4 |
+
|
5 |
+
def image_app():
|
6 |
+
with gr.Blocks():
|
7 |
+
with gr.Row():
|
8 |
+
with gr.Column():
|
9 |
+
seg_automask_image_file = gr.Image(type="filepath").style(height=260)
|
10 |
+
with gr.Row():
|
11 |
+
with gr.Column():
|
12 |
+
seg_automask_image_model_type = gr.Dropdown(
|
13 |
+
choices=[
|
14 |
+
"vit_h",
|
15 |
+
"vit_l",
|
16 |
+
"vit_b",
|
17 |
+
],
|
18 |
+
value="vit_l",
|
19 |
+
label="Model Type",
|
20 |
+
)
|
21 |
+
|
22 |
+
seg_automask_image_min_area = gr.Number(
|
23 |
+
value=0,
|
24 |
+
label="Min Area",
|
25 |
+
)
|
26 |
+
with gr.Row():
|
27 |
+
with gr.Column():
|
28 |
+
seg_automask_image_points_per_side = gr.Slider(
|
29 |
+
minimum=0,
|
30 |
+
maximum=32,
|
31 |
+
step=2,
|
32 |
+
value=16,
|
33 |
+
label="Points per Side",
|
34 |
+
)
|
35 |
+
|
36 |
+
seg_automask_image_points_per_batch = gr.Slider(
|
37 |
+
minimum=0,
|
38 |
+
maximum=64,
|
39 |
+
step=2,
|
40 |
+
value=64,
|
41 |
+
label="Points per Batch",
|
42 |
+
)
|
43 |
+
|
44 |
+
seg_automask_image_predict = gr.Button(value="Generator")
|
45 |
+
|
46 |
+
with gr.Column():
|
47 |
+
output_image = gr.Image()
|
48 |
+
|
49 |
+
seg_automask_image_predict.click(
|
50 |
+
fn=automask_image_app,
|
51 |
+
inputs=[
|
52 |
+
seg_automask_image_file,
|
53 |
+
seg_automask_image_model_type,
|
54 |
+
seg_automask_image_points_per_side,
|
55 |
+
seg_automask_image_points_per_batch,
|
56 |
+
seg_automask_image_min_area,
|
57 |
+
],
|
58 |
+
outputs=[output_image],
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def video_app():
|
63 |
+
with gr.Blocks():
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column():
|
66 |
+
seg_automask_video_file = gr.Video().style(height=260)
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
seg_automask_video_model_type = gr.Dropdown(
|
70 |
+
choices=[
|
71 |
+
"vit_h",
|
72 |
+
"vit_l",
|
73 |
+
"vit_b",
|
74 |
+
],
|
75 |
+
value="vit_l",
|
76 |
+
label="Model Type",
|
77 |
+
)
|
78 |
+
seg_automask_video_min_area = gr.Number(
|
79 |
+
value=1000,
|
80 |
+
label="Min Area",
|
81 |
+
)
|
82 |
+
|
83 |
+
with gr.Row():
|
84 |
+
with gr.Column():
|
85 |
+
seg_automask_video_points_per_side = gr.Slider(
|
86 |
+
minimum=0,
|
87 |
+
maximum=32,
|
88 |
+
step=2,
|
89 |
+
value=16,
|
90 |
+
label="Points per Side",
|
91 |
+
)
|
92 |
+
|
93 |
+
seg_automask_video_points_per_batch = gr.Slider(
|
94 |
+
minimum=0,
|
95 |
+
maximum=64,
|
96 |
+
step=2,
|
97 |
+
value=64,
|
98 |
+
label="Points per Batch",
|
99 |
+
)
|
100 |
+
|
101 |
+
seg_automask_video_predict = gr.Button(value="Generator")
|
102 |
+
with gr.Column():
|
103 |
+
output_video = gr.Video()
|
104 |
+
|
105 |
+
seg_automask_video_predict.click(
|
106 |
+
fn=automask_video_app,
|
107 |
+
inputs=[
|
108 |
+
seg_automask_video_file,
|
109 |
+
seg_automask_video_model_type,
|
110 |
+
seg_automask_video_points_per_side,
|
111 |
+
seg_automask_video_points_per_batch,
|
112 |
+
seg_automask_video_min_area,
|
113 |
+
],
|
114 |
+
outputs=[output_video],
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
def sahi_app():
|
119 |
+
with gr.Blocks():
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
sahi_image_file = gr.Image(type="filepath").style(height=260)
|
123 |
+
sahi_autoseg_model_type = gr.Dropdown(
|
124 |
+
choices=[
|
125 |
+
"vit_h",
|
126 |
+
"vit_l",
|
127 |
+
"vit_b",
|
128 |
+
],
|
129 |
+
value="vit_l",
|
130 |
+
label="Sam Model Type",
|
131 |
+
)
|
132 |
+
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column():
|
135 |
+
sahi_model_type = gr.Dropdown(
|
136 |
+
choices=[
|
137 |
+
"yolov5",
|
138 |
+
"yolov8",
|
139 |
+
],
|
140 |
+
value="yolov5",
|
141 |
+
label="Detector Model Type",
|
142 |
+
)
|
143 |
+
sahi_image_size = gr.Slider(
|
144 |
+
minimum=0,
|
145 |
+
maximum=1600,
|
146 |
+
step=32,
|
147 |
+
value=640,
|
148 |
+
label="Image Size",
|
149 |
+
)
|
150 |
+
|
151 |
+
sahi_overlap_width = gr.Slider(
|
152 |
+
minimum=0,
|
153 |
+
maximum=1,
|
154 |
+
step=0.1,
|
155 |
+
value=0.2,
|
156 |
+
label="Overlap Width",
|
157 |
+
)
|
158 |
+
|
159 |
+
sahi_slice_width = gr.Slider(
|
160 |
+
minimum=0,
|
161 |
+
maximum=640,
|
162 |
+
step=32,
|
163 |
+
value=256,
|
164 |
+
label="Slice Width",
|
165 |
+
)
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
with gr.Column():
|
169 |
+
sahi_model_path = gr.Dropdown(
|
170 |
+
choices=[
|
171 |
+
"yolov5l.pt",
|
172 |
+
"yolov5l6.pt",
|
173 |
+
"yolov8l.pt",
|
174 |
+
"yolov8x.pt"
|
175 |
+
],
|
176 |
+
value="yolov5l6.pt",
|
177 |
+
label="Detector Model Path",
|
178 |
+
)
|
179 |
+
|
180 |
+
sahi_conf_th = gr.Slider(
|
181 |
+
minimum=0,
|
182 |
+
maximum=1,
|
183 |
+
step=0.1,
|
184 |
+
value=0.2,
|
185 |
+
label="Confidence Threshold",
|
186 |
+
)
|
187 |
+
sahi_overlap_height = gr.Slider(
|
188 |
+
minimum=0,
|
189 |
+
maximum=1,
|
190 |
+
step=0.1,
|
191 |
+
value=0.2,
|
192 |
+
label="Overlap Height",
|
193 |
+
)
|
194 |
+
sahi_slice_height = gr.Slider(
|
195 |
+
minimum=0,
|
196 |
+
maximum=640,
|
197 |
+
step=32,
|
198 |
+
value=256,
|
199 |
+
label="Slice Height",
|
200 |
+
)
|
201 |
+
sahi_image_predict = gr.Button(value="Generator")
|
202 |
+
|
203 |
+
with gr.Column():
|
204 |
+
output_image = gr.Image()
|
205 |
+
|
206 |
+
sahi_image_predict.click(
|
207 |
+
fn=sahi_autoseg_app,
|
208 |
+
inputs=[
|
209 |
+
sahi_image_file,
|
210 |
+
sahi_autoseg_model_type,
|
211 |
+
sahi_model_type,
|
212 |
+
sahi_model_path,
|
213 |
+
sahi_conf_th,
|
214 |
+
sahi_image_size,
|
215 |
+
sahi_slice_height,
|
216 |
+
sahi_slice_width,
|
217 |
+
sahi_overlap_height,
|
218 |
+
sahi_overlap_width,
|
219 |
+
|
220 |
+
],
|
221 |
+
outputs=[output_image],
|
222 |
+
)
|
223 |
+
|
224 |
+
def metaseg_app():
|
225 |
+
app = gr.Blocks()
|
226 |
+
with app:
|
227 |
+
with gr.Row():
|
228 |
+
with gr.Column():
|
229 |
+
with gr.Tab("Image"):
|
230 |
+
image_app()
|
231 |
+
with gr.Tab("Video"):
|
232 |
+
video_app()
|
233 |
+
with gr.Tab("SAHI"):
|
234 |
+
sahi_app()
|
235 |
+
|
236 |
+
|
237 |
+
app.queue(concurrency_count=1)
|
238 |
+
app.launch(debug=True, enable_queue=True)
|
239 |
+
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
+
metaseg_app()
|
demo.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor, SahiAutoSegmentation, sahi_sliced_predict
|
2 |
+
|
3 |
+
# For image
|
4 |
+
|
5 |
+
def automask_image_app(image_path, model_type, points_per_side, points_per_batch, min_area):
|
6 |
+
SegAutoMaskPredictor().image_predict(
|
7 |
+
source=image_path,
|
8 |
+
model_type=model_type, # vit_l, vit_h, vit_b
|
9 |
+
points_per_side=points_per_side,
|
10 |
+
points_per_batch=points_per_batch,
|
11 |
+
min_area=min_area,
|
12 |
+
output_path="output.png",
|
13 |
+
show=False,
|
14 |
+
save=True,
|
15 |
+
)
|
16 |
+
return "output.png"
|
17 |
+
|
18 |
+
|
19 |
+
# For video
|
20 |
+
|
21 |
+
def automask_video_app(video_path, model_type, points_per_side, points_per_batch, min_area):
|
22 |
+
SegAutoMaskPredictor().video_predict(
|
23 |
+
source=video_path,
|
24 |
+
model_type=model_type, # vit_l, vit_h, vit_b
|
25 |
+
points_per_side=points_per_side,
|
26 |
+
points_per_batch=points_per_batch,
|
27 |
+
min_area=min_area,
|
28 |
+
output_path="output.mp4",
|
29 |
+
)
|
30 |
+
return "output.mp4"
|
31 |
+
|
32 |
+
|
33 |
+
# For manuel box and point selection
|
34 |
+
|
35 |
+
def manual_app(image_path, model_type, input_point, input_label, input_box, multimask_output, random_color):
|
36 |
+
SegManualMaskPredictor().image_predict(
|
37 |
+
source=image_path,
|
38 |
+
model_type=model_type, # vit_l, vit_h, vit_b
|
39 |
+
input_point=input_point,
|
40 |
+
input_label=input_label,
|
41 |
+
input_box=input_box,
|
42 |
+
multimask_output=multimask_output,
|
43 |
+
random_color=random_color,
|
44 |
+
output_path="output.png",
|
45 |
+
show=False,
|
46 |
+
save=True,
|
47 |
+
)
|
48 |
+
return "output.png"
|
49 |
+
|
50 |
+
|
51 |
+
# For sahi sliced prediction
|
52 |
+
|
53 |
+
def sahi_autoseg_app(
|
54 |
+
image_path,
|
55 |
+
sam_model_type,
|
56 |
+
detection_model_type,
|
57 |
+
detection_model_path,
|
58 |
+
conf_th,
|
59 |
+
image_size,
|
60 |
+
slice_height,
|
61 |
+
slice_width,
|
62 |
+
overlap_height_ratio,
|
63 |
+
overlap_width_ratio,
|
64 |
+
):
|
65 |
+
boxes = sahi_sliced_predict(
|
66 |
+
image_path=image_path,
|
67 |
+
detection_model_type=detection_model_type, # yolov8, detectron2, mmdetection, torchvision
|
68 |
+
detection_model_path=detection_model_path,
|
69 |
+
conf_th=conf_th,
|
70 |
+
image_size=image_size,
|
71 |
+
slice_height=slice_height,
|
72 |
+
slice_width=slice_width,
|
73 |
+
overlap_height_ratio=overlap_height_ratio,
|
74 |
+
overlap_width_ratio=overlap_width_ratio,
|
75 |
+
)
|
76 |
+
|
77 |
+
SahiAutoSegmentation().predict(
|
78 |
+
source=image_path,
|
79 |
+
model_type=sam_model_type,
|
80 |
+
input_box=boxes,
|
81 |
+
multimask_output=False,
|
82 |
+
random_color=False,
|
83 |
+
show=False,
|
84 |
+
save=True,
|
85 |
+
)
|
86 |
+
|
87 |
+
return "output.png"
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
metaseg==0.5.8
|
2 |
+
sahi
|
3 |
+
yolov5
|