|
|
import streamlit as st |
|
|
import cv2 |
|
|
from streamlit_drawable_canvas import st_canvas |
|
|
from keras.models import load_model |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
drawing_mode = st.sidebar.selectbox("Drawing tool:", ("freedraw", "line", "rect", "circle", "transform")) |
|
|
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 10) |
|
|
stroke_color = st.sidebar.color_picker("Stroke color hex: ", "#000000") |
|
|
bg_color = st.sidebar.color_picker("Background color hex: ", "#FFFFFF") |
|
|
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"]) |
|
|
realtime_update = st.sidebar.checkbox("Update in realtime", True) |
|
|
|
|
|
@st.cache_resource |
|
|
def load_mnist_model(): |
|
|
return load_model("mnist_model.keras") |
|
|
|
|
|
model = load_mnist_model() |
|
|
|
|
|
canvas_result = st_canvas( |
|
|
fill_color="rgba(255, 165, 0, 0.3)", |
|
|
stroke_width=stroke_width, |
|
|
stroke_color=stroke_color, |
|
|
background_color=bg_color, |
|
|
update_streamlit=realtime_update, |
|
|
height=280, |
|
|
width=280, |
|
|
drawing_mode=drawing_mode, |
|
|
key="canvas", |
|
|
) |
|
|
|
|
|
if canvas_result.image_data is not None: |
|
|
st.image(canvas_result.image_data, caption="Original Drawing") |
|
|
img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY) |
|
|
img = 255 - img |
|
|
img_resized = cv2.resize(img, (28, 28)) |
|
|
img_normalized = img_resized / 255.0 |
|
|
final_img = img_normalized.reshape(1, 28, 28, 1) |
|
|
st.image(img_resized, caption="Preprocessed (28x28)") |
|
|
prediction = model.predict(final_img) |
|
|
st.write("Prediction:", np.argmax(prediction)) |