Spaces:
Sleeping
Sleeping
| import torch.nn as nn | |
| import torch | |
| import math | |
| class TokenEmbedding(nn.Embedding): | |
| def __init__(self, vocab_size, embed_size=512): | |
| super().__init__(vocab_size, embed_size, padding_idx=0) # look at vocab_file | |
| class SegmentEmbedding(nn.Embedding): | |
| def __init__(self, embed_size=512): | |
| super().__init__(3, embed_size, padding_idx=0) | |
| class PositionalEmbedding(nn.Module): | |
| def __init__(self, d_model, max_len=512): | |
| super().__init__() | |
| # Compute the positional encodings once in log space. | |
| pe = torch.zeros(max_len, d_model).float() | |
| pe.require_grad = False | |
| position = torch.arange(0, max_len).float().unsqueeze(1) | |
| div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp() | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| return self.pe[:, :x.size(1)] | |
| class BERTEmbedding(nn.Module): | |
| """ | |
| BERT Embedding which consisted of following features | |
| 1. TokenEmbedding : normal embedding matrix | |
| 2. PositionalEmbedding : adding positional information using sin, cos | |
| 2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2) | |
| sum of all these features are output of BERTEmbedding | |
| """ | |
| def __init__(self, vocab_size, embed_size, dropout=0.1): | |
| """ | |
| :param vocab_size: total vocab size | |
| :param embed_size: embedding size of token embedding | |
| :param dropout: dropout rate | |
| """ | |
| super().__init__() | |
| self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size) | |
| self.position = PositionalEmbedding(d_model=self.token.embedding_dim) | |
| self.segment = SegmentEmbedding(embed_size=self.token.embedding_dim) | |
| self.dropout = nn.Dropout(p=dropout) | |
| self.embed_size = embed_size | |
| def forward(self, sequence, segment_label): | |
| x = self.token(sequence) + self.position(sequence) + self.segment(segment_label) | |
| return self.dropout(x) |