Spaces:
Running
Running
# import torch.nn as nn | |
# import torch | |
import argparse | |
from torch.utils.data import DataLoader | |
import torch.nn as nn | |
from torch.optim import Adam, SGD | |
import torch | |
from sklearn.metrics import precision_score, recall_score, f1_score | |
# from pretrainer import BERTFineTuneTrainer | |
from dataset import TokenizerDataset | |
from vocab import Vocab | |
import tqdm | |
import numpy as np | |
import time | |
from bert import BERT | |
# from vocab import Vocab | |
# class BERTForSequenceClassification(nn.Module): | |
# """ | |
# Since its classification, | |
# n_labels = 2 | |
# """ | |
# def __init__(self, vocab_size, n_labels, layers=None, hidden=768, n_layers=12, attn_heads=12, dropout=0.1): | |
# super().__init__() | |
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# print(device) | |
# # model_ep0 = torch.load("output_1/bert_trained.model.ep0", map_location=device) | |
# self.bert = torch.load("output_1/bert_trained.model.ep0", map_location=device) | |
# self.dropout = nn.Dropout(dropout) | |
# # add an output layer | |
# self. | |
# def forward(self, x, segment_info): | |
# return x | |
def accurate_nb(preds, labels): | |
pred_flat = np.argmax(preds, axis=1).flatten() | |
labels_flat = np.argmax(labels, axis=1).flatten() | |
labels_flat = labels.flatten() | |
return np.sum(pred_flat == labels_flat) | |
class BERTFineTunedTrainer: | |
def __init__(self, bert: BERT, vocab_size: int, | |
train_dataloader: DataLoader = None, test_dataloader: DataLoader = None, | |
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000, | |
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, num_labels=2): | |
""" | |
:param bert: BERT model which you want to train | |
:param vocab_size: total word vocab size | |
:param train_dataloader: train dataset data loader | |
:param test_dataloader: test dataset data loader [can be None] | |
:param lr: learning rate of optimizer | |
:param betas: Adam optimizer betas | |
:param weight_decay: Adam optimizer weight decay param | |
:param with_cuda: traning with cuda | |
:param log_freq: logging frequency of the batch iteration | |
""" | |
self.device = "cpu" | |
self.model = bert | |
self.test_data = test_dataloader | |
self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay, eps=1e-9) | |
if num_labels == 1: | |
self.criterion = nn.MSELoss() | |
elif num_labels == 2: | |
self.criterion = nn.CrossEntropyLoss() | |
elif num_labels > 2: | |
self.criterion = nn.BCEWithLogitsLoss() | |
self.log_freq = log_freq | |
self.workspace_name = workspace_name | |
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()])) | |
def test(self, epoch): | |
self.iteration(epoch, self.test_data, train=False) | |
def iteration(self, epoch, data_loader, train=True): | |
""" | |
loop over the data_loader for training or testing | |
if on train status, backward operation is activated | |
and also auto save the model every peoch | |
:param epoch: current epoch index | |
:param data_loader: torch.utils.data.DataLoader for iteration | |
:param train: boolean value of is train or test | |
:return: None | |
""" | |
str_code = "train" if train else "test" | |
# Setting the tqdm progress bar | |
data_iter = tqdm.tqdm(enumerate(data_loader), | |
desc="EP_%s:%d" % (str_code, epoch), | |
total=len(data_loader), | |
bar_format="{l_bar}{r_bar}") | |
avg_loss = 0.0 | |
total_correct = 0 | |
total_element = 0 | |
plabels = [] | |
tlabels = [] | |
logits_list = [] | |
labels_list = [] | |
self.model.eval() | |
for i, data in data_iter: | |
data = {key: value.to(self.device) for key, value in data.items()} | |
with torch.no_grad(): | |
h_rep, logits = self.model.forward(data["bert_input"], data["segment_label"]) | |
# print(logits, logits.shape) | |
logits_list.append(logits.cpu()) | |
labels_list.append(data["progress_status"].cpu()) | |
probs = nn.LogSoftmax(dim=-1)(logits) | |
predicted_labels = torch.argmax(probs, dim=-1) | |
true_labels = torch.argmax(data["progress_status"], dim=-1) | |
plabels.extend(predicted_labels.cpu().numpy()) | |
tlabels.extend(true_labels.cpu().numpy()) | |
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels) | |
# Compare predicted labels to true labels and calculate accuracy | |
correct = (predicted_labels == true_labels).sum().item() | |
total_correct += correct | |
total_element += data["progress_status"].nelement() | |
precisions = precision_score(plabels, tlabels, average="weighted") | |
recalls = recall_score(plabels, tlabels, average="weighted") | |
f1_scores = f1_score(plabels, tlabels, average="weighted") | |
accuracy = total_correct * 100.0 / total_element | |
final_msg = { | |
"epoch": f"EP{epoch}_{str_code}", | |
"accuracy": accuracy, | |
"avg_loss": avg_loss / len(data_iter), | |
"precisions": precisions, | |
"recalls": recalls, | |
"f1_scores": f1_scores | |
} | |
print(final_msg) | |
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_acc=", total_correct * 100.0 / total_element) | |
if __name__ == "__main__": | |
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# print(device) | |
# is_model = torch.load("ratio_proportion_change4/output/bert_fine_tuned.IS.model.ep40", map_location=device) | |
# learned_parameters = model_ep0.state_dict() | |
# for param_name, param_tensor in learned_parameters.items(): | |
# print(param_name) | |
# print(param_tensor) | |
# # print(model_ep0.state_dict()) | |
# # model_ep0.add_module("out", nn.Linear(10,2)) | |
# # print(model_ep0) | |
# seq_vocab = Vocab("pretraining/vocab_file.txt") | |
# seq_vocab.load_vocab() | |
# classifier = BERTForSequenceClassification(len(seq_vocab.vocab), 2) | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-workspace_name', type=str, default="ratio_proportion_change4") | |
parser.add_argument("-t", "--test_dataset", type=str, default="../test.txt", help="test set for evaluate fine tune train set") | |
parser.add_argument("-tlabel", "--test_label", type=str, default="finetuning/train_in_label.txt", help="test set for evaluate fine tune train set") | |
##### change Checkpoint | |
parser.add_argument("-c", "--finetuned_bert_checkpoint", type=str, default="ratio_proportion_change4/output/bert_fine_tuned.FS.model.ep30", help="checkpoint of saved pretrained bert model") | |
parser.add_argument("-v", "--vocab_path", type=str, default="pretraining/vocab.txt", help="built vocab model path with bert-vocab") | |
parser.add_argument("-hs", "--hidden", type=int, default=64, help="hidden size of transformer model") | |
parser.add_argument("-l", "--layers", type=int, default=4, help="number of layers") | |
parser.add_argument("-a", "--attn_heads", type=int, default=8, help="number of attention heads") | |
parser.add_argument("-s", "--seq_len", type=int, default=100, help="maximum sequence length") | |
parser.add_argument("-b", "--batch_size", type=int, default=32, help="number of batch_size") | |
parser.add_argument("-e", "--epochs", type=int, default=1, help="number of epochs") | |
# Use 50 for pretrain, and 10 for fine tune | |
parser.add_argument("-w", "--num_workers", type=int, default=4, help="dataloader worker size") | |
# Later run with cuda | |
parser.add_argument("--with_cuda", type=bool, default=False, help="training with CUDA: true, or false") | |
parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n") | |
parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in corpus") | |
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids") | |
parser.add_argument("--on_memory", type=bool, default=True, help="Loading on memory: true or false") | |
parser.add_argument("--dropout", type=float, default=0.1, help="dropout of network") | |
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate of adam") | |
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam") | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="adam first beta value") | |
args = parser.parse_args() | |
for k,v in vars(args).items(): | |
if ('dataset' in k) or ('path' in k) or ('label' in k): | |
if v: | |
setattr(args, f"{k}", args.workspace_name+"/"+v) | |
print(f"args.{k} : {getattr(args, f'{k}')}") | |
print("Loading Vocab", args.vocab_path) | |
vocab_obj = Vocab(args.vocab_path) | |
vocab_obj.load_vocab() | |
print("Vocab Size: ", len(vocab_obj.vocab)) | |
print("Loading Test Dataset", args.test_dataset) | |
test_dataset = TokenizerDataset(args.test_dataset, args.test_label, vocab_obj, seq_len=args.seq_len, train=False) | |
print("Creating Dataloader") | |
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=0) | |
bert = torch.load(args.finetuned_bert_checkpoint, map_location="cpu") | |
if args.workspace_name == "ratio_proportion_change4": | |
num_labels = 7 | |
elif args.workspace_name == "ratio_proportion_change3": | |
num_labels = 7 | |
elif args.workspace_name == "scale_drawings_3": | |
num_labels = 7 | |
elif args.workspace_name == "sales_tax_discounts_two_rates": | |
num_labels = 3 | |
print(f"Number of Labels : {num_labels}") | |
print("Creating BERT Fine Tune Trainer") | |
trainer = BERTFineTunedTrainer(bert, len(vocab_obj.vocab), train_dataloader=None, test_dataloader=test_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, workspace_name = args.workspace_name, num_labels=num_labels) | |
print("Testing Start....") | |
start_time = time.time() | |
for epoch in range(args.epochs): | |
trainer.test(epoch) | |
end_time = time.time() | |
print("Time Taken to fine tune dataset = ", end_time - start_time) |