Spaces:
Running
Running
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler | |
from keras.preprocessing.sequence import pad_sequences | |
from sklearn.model_selection import train_test_split | |
from transformers import BertTokenizer, BertConfig | |
from transformers import AdamW, BertForSequenceClassification, get_linear_schedule_with_warmup | |
from tqdm import tqdm, trange | |
import pandas as pd | |
import io | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from torch.autograd.gradcheck import zero_gradients | |
import argparse | |
import random | |
from utils import * | |
import os | |
class softCrossEntropy(nn.Module): | |
def __init__(self, reduce=True): | |
super(softCrossEntropy, self).__init__() | |
self.reduce = reduce | |
return | |
def forward(self, inputs, target): | |
""" | |
:param inputs: predictions | |
:param target: target labels in vector form | |
:return: loss | |
""" | |
log_likelihood = -F.log_softmax(inputs, dim=1) | |
sample_num, class_num = target.shape | |
if self.reduce: | |
loss = torch.sum(torch.mul(log_likelihood, target)) / sample_num | |
else: | |
loss = torch.sum(torch.mul(log_likelihood, target), 1) | |
return loss | |
def one_hot_tensor(y_batch_tensor, num_classes, device): | |
y_tensor = torch.FloatTensor(y_batch_tensor.size(0), num_classes).fill_(0).to(device) | |
y_tensor[np.arange(len(y_batch_tensor)), y_batch_tensor] = 1.0 | |
return y_tensor | |
class on_manifold_samples(object): | |
def __init__(self, epsilon_x=1e-4, epsilon_y=0.1): | |
super(on_manifold_samples, self).__init__() | |
self.epsilon_x = epsilon_x | |
self.epsilon_y = epsilon_y | |
def generate(self, input_ids, input_mask, y, model): | |
model.eval() | |
with torch.no_grad(): | |
if torch.cuda.device_count() > 1: | |
embedding = model.module.get_input_embeddings()(input_ids) | |
else: | |
embedding = model.get_input_embeddings()(input_ids) | |
x = embedding.detach() | |
inv_index = torch.arange(x.size(0) - 1, -1, -1).long() | |
x_tilde = x[inv_index, :].detach() | |
y_tilde = y[inv_index, :] | |
x_init = x.detach() + torch.zeros_like(x).uniform_(-self.epsilon_x, self.epsilon_x) | |
x_init.requires_grad_() | |
zero_gradients(x_init) | |
if x_init.grad is not None: | |
x_init.grad.data.fill_(0) | |
fea_b = model(inputs_embeds=x_init, token_type_ids=None, attention_mask=input_mask)[1][-1] | |
fea_b = torch.mean(fea_b, 1) | |
with torch.no_grad(): | |
fea_t = model(inputs_embeds=x_tilde, token_type_ids=None, attention_mask=input_mask)[1][-1] | |
fea_t = torch.mean(fea_t, 1) | |
Dx = cos_dist(fea_b, fea_t) | |
model.zero_grad() | |
if torch.cuda.device_count() > 1: | |
Dx = Dx.mean() | |
Dx.backward() | |
x_prime = x_init.data - self.epsilon_x * torch.sign(x_init.grad.data) | |
x_prime = torch.min(torch.max(x_prime, embedding - self.epsilon_x), embedding + self.epsilon_x) | |
y_prime = (1 - self.epsilon_y) * y + self.epsilon_y * y_tilde | |
model.train() | |
return x_prime.detach(), y_prime.detach() | |
class off_manifold_samples(object): | |
def __init__(self, eps=0.001, rand_init='n'): | |
super(off_manifold_samples, self).__init__() | |
self.eps = eps | |
self.rand_init = rand_init | |
def generate(self, model, input_ids, input_mask, labels): | |
model.eval() | |
ny = labels | |
with torch.no_grad(): | |
if torch.cuda.device_count() > 1: | |
embedding = model.module.get_input_embeddings()(input_ids) | |
else: | |
embedding = model.get_input_embeddings()(input_ids) | |
input_embedding = embedding.detach() | |
#random init the adv samples | |
if self.rand_init == 'y': | |
input_embedding = input_embedding + torch.zeros_like(input_embedding).uniform_(-self.eps, self.eps) | |
input_embedding.requires_grad = True | |
zero_gradients(input_embedding) | |
if input_embedding.grad is not None: | |
input_embedding.grad.data.fill_(0) | |
cost = model(inputs_embeds=input_embedding, token_type_ids=None, attention_mask=input_mask, labels=ny)[0] | |
if torch.cuda.device_count() > 1: | |
cost = cost.mean() | |
model.zero_grad() | |
cost.backward() | |
off_samples = input_embedding + self.eps*torch.sign(input_embedding.grad.data) | |
off_samples = torch.min(torch.max(off_samples, embedding - self.eps), embedding + self.eps) | |
model.train() | |
return off_samples.detach() | |
class ECE(nn.Module): | |
def __init__(self, n_bins=15): | |
""" | |
n_bins (int): number of confidence interval bins | |
""" | |
super(ECE, self).__init__() | |
bin_boundaries = torch.linspace(0, 1, n_bins + 1) | |
self.bin_lowers = bin_boundaries[:-1] | |
self.bin_uppers = bin_boundaries[1:] | |
def forward(self, logits, labels): | |
softmaxes = F.softmax(logits, dim=1) | |
confidences, predictions = torch.max(softmaxes, 1) | |
accuracies = predictions.eq(labels) | |
ece = torch.zeros(1, device=logits.device) | |
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): | |
# Calculated |confidence - accuracy| in each bin | |
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) | |
prop_in_bin = in_bin.float().mean() | |
if prop_in_bin.item() > 0: | |
accuracy_in_bin = accuracies[in_bin].float().mean() | |
avg_confidence_in_bin = confidences[in_bin].mean() | |
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin | |
return ece | |
# Function to calculate the accuracy of our predictions vs labels | |
def accurate_nb(preds, labels): | |
pred_flat = np.argmax(preds, axis=1).flatten() | |
labels_flat = labels.flatten() | |
return np.sum(pred_flat == labels_flat) | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--lr", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.") | |
parser.add_argument("--eval_batch_size", default=128, type=int, help="Batch size for training.") | |
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.") | |
parser.add_argument("--seed", default=0, type=int, help="Number of epochs for training.") | |
parser.add_argument("--dataset", default='20news-15', type=str, help="dataset") | |
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") | |
parser.add_argument("--beta_on", default=1., type=float, help="Weight of on manifold reg") | |
parser.add_argument("--beta_off", default=1., type=float, help="Weight of off manifold reg") | |
parser.add_argument("--eps_in", default=1e-4, type=float, help="Perturbation size of on-manifold regularizer") | |
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label") | |
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training") | |
parser.add_argument('--saved_dataset', type=str, default='n', help='whether save the preprocessed pt file of the dataset') | |
args = parser.parse_args() | |
print(args) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
args.device = device | |
set_seed(args) | |
ece_criterion = ECE().to(args.device) | |
soft_ce = softCrossEntropy() | |
on_manifold = on_manifold_samples(epsilon_x=args.eps_in, epsilon_y=args.eps_y) | |
off_manifold = off_manifold_samples(eps=args.eps_out) | |
# load dataset | |
if args.saved_dataset == 'n': | |
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.dataset) | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) | |
train_input_ids = [] | |
val_input_ids = [] | |
test_input_ids = [] | |
if args.dataset == '20news' or args.dataset == '20news-15': | |
MAX_LEN = 150 | |
else: | |
MAX_LEN = 256 | |
for sent in train_sentences: | |
# `encode` will: | |
# (1) Tokenize the sentence. | |
# (2) Prepend the `[CLS]` token to the start. | |
# (3) Append the `[SEP]` token to the end. | |
# (4) Map tokens to their IDs. | |
encoded_sent = tokenizer.encode( | |
sent, # Sentence to encode. | |
add_special_tokens = True, # Add '[CLS]' and '[SEP]' | |
# This function also supports truncation and conversion | |
# to pytorch tensors, but we need to do padding, so we | |
# can't use these features :( . | |
max_length = MAX_LEN, # Truncate all sentences. | |
#return_tensors = 'pt', # Return pytorch tensors. | |
) | |
# Add the encoded sentence to the list. | |
train_input_ids.append(encoded_sent) | |
for sent in val_sentences: | |
encoded_sent = tokenizer.encode( | |
sent, | |
add_special_tokens = True, | |
max_length = MAX_LEN, | |
) | |
val_input_ids.append(encoded_sent) | |
for sent in test_sentences: | |
encoded_sent = tokenizer.encode( | |
sent, | |
add_special_tokens = True, | |
max_length = MAX_LEN, | |
) | |
test_input_ids.append(encoded_sent) | |
# Pad our input tokens | |
train_input_ids = pad_sequences(train_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
# Create attention masks | |
train_attention_masks = [] | |
val_attention_masks = [] | |
test_attention_masks = [] | |
# Create a mask of 1s for each token followed by 0s for padding | |
for seq in train_input_ids: | |
seq_mask = [float(i>0) for i in seq] | |
train_attention_masks.append(seq_mask) | |
for seq in val_input_ids: | |
seq_mask = [float(i>0) for i in seq] | |
val_attention_masks.append(seq_mask) | |
for seq in test_input_ids: | |
seq_mask = [float(i>0) for i in seq] | |
test_attention_masks.append(seq_mask) | |
# Convert all of our data into torch tensors, the required datatype for our model | |
train_inputs = torch.tensor(train_input_ids) | |
validation_inputs = torch.tensor(val_input_ids) | |
train_labels = torch.tensor(train_labels) | |
validation_labels = torch.tensor(val_labels) | |
train_masks = torch.tensor(train_attention_masks) | |
validation_masks = torch.tensor(val_attention_masks) | |
test_inputs = torch.tensor(test_input_ids) | |
test_labels = torch.tensor(test_labels) | |
test_masks = torch.tensor(test_attention_masks) | |
# Create an iterator of our data with torch DataLoader. | |
train_data = TensorDataset(train_inputs, train_masks, train_labels) | |
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels) | |
prediction_data = TensorDataset(test_inputs, test_masks, test_labels) | |
dataset_dir = 'dataset/{}'.format(args.dataset) | |
if not os.path.exists(dataset_dir): | |
os.makedirs(dataset_dir) | |
torch.save(train_data, dataset_dir+'/train.pt') | |
torch.save(validation_data, dataset_dir+'/val.pt') | |
torch.save(prediction_data, dataset_dir+'/test.pt') | |
else: | |
dataset_dir = 'dataset/{}'.format(args.dataset) | |
train_data = torch.load(dataset_dir+'/train.pt') | |
validation_data = torch.load(dataset_dir+'/val.pt') | |
prediction_data = torch.load(dataset_dir+'/test.pt') | |
train_sampler = RandomSampler(train_data) | |
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) | |
validation_sampler = SequentialSampler(validation_data) | |
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=args.eval_batch_size) | |
prediction_sampler = SequentialSampler(prediction_data) | |
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=args.eval_batch_size) | |
if args.dataset == '20news': | |
num_labels = 20 | |
elif args.dataset == '20news-15': | |
num_labels = 15 | |
elif args.dataset == 'wos-in': | |
num_labels = 100 | |
elif args.dataset == 'wos': | |
num_labels = 134 | |
print(num_labels) | |
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels= num_labels, output_hidden_states=True) | |
if torch.cuda.device_count() > 1: | |
print("Let's use", torch.cuda.device_count(), "GPUs!") | |
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs | |
model = nn.DataParallel(model) | |
model.to(args.device) | |
#######train model | |
param_optimizer = list(model.named_parameters()) | |
no_decay = ['bias', 'gamma', 'beta'] | |
optimizer_grouped_parameters = [ | |
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], | |
'weight_decay_rate': args.weight_decay}, | |
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], | |
'weight_decay_rate': 0.0} | |
] | |
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr, eps=1e-9) | |
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1) | |
t_total = len(train_dataloader) * args.epochs | |
# Store our loss and accuracy for plotting | |
best_val = -np.inf | |
# trange is a tqdm wrapper around the normal python range | |
for epoch in trange(args.epochs, desc="Epoch"): | |
# Training | |
# Set our model to training mode (as opposed to evaluation mode) | |
# Tracking variables | |
tr_loss1, tr_loss2 = 0, 0 | |
nb_tr_examples, nb_tr_steps = 0, 0 | |
model.train() | |
# Train the data for one epoch | |
for step, batch in enumerate(train_dataloader): | |
# Add batch to GPU | |
batch = tuple(t.to(args.device) for t in batch) | |
# Unpack the inputs from our dataloader | |
b_input_ids, b_input_mask, b_labels = batch | |
# generate on manifold samples | |
targets_onehot = one_hot_tensor(b_labels, num_labels, args.device) | |
on_manifold_x, on_manifold_y = on_manifold.generate(b_input_ids, b_input_mask, targets_onehot, model) | |
model.train() | |
# train with on manifold samples | |
on_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=on_manifold_x)[0] | |
loss_on = soft_ce(on_manifold_logits, on_manifold_y) | |
#generate off manifold samples | |
off_manifold_x = off_manifold.generate(model, b_input_ids, b_input_mask, b_labels) | |
model.train() | |
# train with off manifold samples | |
off_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=off_manifold_x)[0] | |
off_manifold_prob = F.softmax(off_manifold_logits, dim=1) | |
loss_off = -torch.mean(-torch.sum(off_manifold_prob*torch.log(off_manifold_prob), dim=1)) | |
loss_reg = args.beta_on*loss_on + args.beta_off*loss_off | |
if torch.cuda.device_count() > 1: | |
loss_reg = loss_reg.mean() | |
# Clear out the gradients (by default they accumulate) | |
optimizer.zero_grad() | |
loss_reg.backward() | |
loss_ce = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)[0] | |
if torch.cuda.device_count() > 1: | |
loss_ce = loss_ce.mean() | |
loss_ce.backward() | |
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) | |
# Update parameters and take a step using the computed gradient | |
optimizer.step() | |
# Update tracking variables | |
tr_loss1 += loss_ce.item() | |
tr_loss2 += loss_reg.item() | |
nb_tr_examples += b_input_ids.size(0) | |
nb_tr_steps += 1 | |
print("Train cross entropy loss: {} | reg loss: {}".format(tr_loss1/nb_tr_steps, tr_loss2/nb_tr_steps)) | |
# Validation | |
# Put model in evaluation mode to evaluate loss on the validation set | |
model.eval() | |
# Tracking variables | |
eval_accurate_nb = 0 | |
nb_eval_examples = 0 | |
# Evaluate data for one epoch | |
for batch in validation_dataloader: | |
# Add batch to GPU | |
batch = tuple(t.to(args.device) for t in batch) | |
# Unpack the inputs from our dataloader | |
b_input_ids, b_input_mask, b_labels = batch | |
# Telling the model not to compute or store gradients, saving memory and speeding up validation | |
with torch.no_grad(): | |
# Forward pass, calculate logit predictions | |
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] | |
# Move logits and labels to CPU | |
logits = logits.detach().cpu().numpy() | |
label_ids = b_labels.to('cpu').numpy() | |
tmp_eval_nb = accurate_nb(logits, label_ids) | |
eval_accurate_nb += tmp_eval_nb | |
nb_eval_examples += label_ids.shape[0] | |
eval_accuracy = eval_accurate_nb/nb_eval_examples | |
print("Validation Accuracy: {}".format(eval_accuracy)) | |
scheduler.step(eval_accuracy) | |
if eval_accuracy > best_val: | |
dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.dataset, args.seed, args.eps_in, args.eps_y, args.eps_out) | |
output_dir = './model_save/{}'.format(dirname) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
print("Saving model to %s" % output_dir) | |
model_to_save = model.module if hasattr(model, 'module') else model | |
model_to_save.save_pretrained(output_dir) | |
#tokenizer.save_pretrained(output_dir) | |
best_val = eval_accuracy | |
# ##### test model on test data | |
# Put model in evaluation mode | |
model.eval() | |
# Tracking variables | |
predictions , true_labels = [], [] | |
eval_accurate_nb = 0 | |
nb_test_examples = 0 | |
logits_list = [] | |
labels_list = [] | |
# Predict | |
for batch in prediction_dataloader: | |
# Add batch to GPU | |
batch = tuple(t.to(args.device) for t in batch) | |
# Unpack the inputs from our dataloader | |
b_input_ids, b_input_mask, b_labels = batch | |
# Telling the model not to compute or store gradients, saving memory and speeding up prediction | |
with torch.no_grad(): | |
# Forward pass, calculate logit predictions | |
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] | |
logits_list.append(logits) | |
labels_list.append(b_labels) | |
# Move logits and labels to CPU | |
logits = logits.detach().cpu().numpy() | |
label_ids = b_labels.to('cpu').numpy() | |
tmp_eval_nb = accurate_nb(logits, label_ids) | |
eval_accurate_nb += tmp_eval_nb | |
nb_test_examples += label_ids.shape[0] | |
# Store predictions and true labels | |
predictions.append(logits) | |
true_labels.append(label_ids) | |
print("Test Accuracy: {}".format(eval_accurate_nb/nb_test_examples)) | |
logits_ece = torch.cat(logits_list) | |
labels_ece = torch.cat(labels_list) | |
ece = ece_criterion(logits_ece, labels_ece).item() | |
print('ECE on test data: {}'.format(ece)) | |
if __name__ == "__main__": | |
main() |