Spaces:
Running
Running
import torch.nn as nn | |
import torch | |
from .transformer import TransformerBlock | |
from .embedding import BERTEmbedding | |
class BERT(nn.Module): | |
""" | |
BERT model : Bidirectional Encoder Representations from Transformers. | |
""" | |
def __init__(self, vocab_size, hidden=768, n_layers=12, attn_heads=12, dropout=0.1): | |
""" | |
:param vocab_size: vocab_size of total words | |
:param hidden: BERT model hidden size | |
:param n_layers: numbers of Transformer blocks(layers) | |
:param attn_heads: number of attention heads | |
:param dropout: dropout rate | |
""" | |
super().__init__() | |
self.hidden = hidden | |
self.n_layers = n_layers | |
self.attn_heads = attn_heads | |
# paper noted they used 4*hidden_size for ff_network_hidden_size | |
self.feed_forward_hidden = hidden * 4 | |
# embedding for BERT, sum of positional, segment, token embeddings | |
self.embedding = BERTEmbedding(vocab_size=vocab_size, embed_size=hidden) | |
# multi-layers transformer blocks, deep network | |
self.transformer_blocks = nn.ModuleList( | |
[TransformerBlock(hidden, attn_heads, hidden * 4, dropout) for _ in range(n_layers)]) | |
# self.attention_values = [] | |
def forward(self, x, segment_info): | |
# attention masking for padded token | |
# torch.ByteTensor([batch_size, 1, seq_len, seq_len) | |
device = x.device | |
masked = (x > 0).unsqueeze(1).repeat(1, x.size(1), 1) | |
r,e,c = masked.shape | |
mask = torch.zeros((r, e, c), dtype=torch.bool).to(device=device) | |
for i in range(r): | |
mask[i] = masked[i].T*masked[i] | |
mask = mask.unsqueeze(1) | |
# mask = (x > 0).unsqueeze(1).repeat(1, x.size(1), 1).unsqueeze(1) | |
# print("bert mask: ", mask) | |
# embedding the indexed sequence to sequence of vectors | |
x = self.embedding(x, segment_info) | |
# self.attention_values = [] | |
# running over multiple transformer blocks | |
for transformer in self.transformer_blocks: | |
x = transformer.forward(x, mask) | |
# self.attention_values.append(transformer.p_attn) | |
return x | |