Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import pickle | |
from gradio import Progress | |
import numpy as np | |
import subprocess | |
import shutil | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import roc_curve, auc | |
import pandas as pd | |
# Define the function to process the input file and model selection | |
def process_file(file,label,info,model_name,inc_slider,progress=Progress(track_tqdm=True)): | |
# progress = gr.Progress(track_tqdm=True) | |
progress(0, desc="Starting the processing") | |
with open(file.name, 'r') as f: | |
content = f.read() | |
saved_test_dataset = "train.txt" | |
saved_test_label = "train_label.txt" | |
saved_train_info="train_info.txt" | |
# Save the uploaded file content to a specified location | |
shutil.copyfile(file.name, saved_test_dataset) | |
shutil.copyfile(label.name, saved_test_label) | |
shutil.copyfile(info.name, saved_train_info) | |
# Load the test_info file and the graduation rate file | |
test_info = pd.read_csv('train_info.txt', sep=',', header=None, engine='python') | |
grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data | |
# Step 1: Extract unique school numbers from test_info | |
unique_schools = test_info[0].unique() | |
# Step 2: Filter the grad_rate_data using the unique school numbers | |
schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)] | |
# Define a threshold for high and low graduation rates (adjust as needed) | |
grad_rate_threshold = 0.9 | |
# Step 4: Divide schools into high and low graduation rate groups | |
high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique() | |
low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique() | |
# Step 5: Sample percentage of schools from each group | |
high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist() | |
low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist() | |
# Step 6: Combine the sampled schools | |
random_schools = high_sample + low_sample | |
# Step 7: Get indices for the sampled schools | |
indices = test_info[test_info[0].isin(random_schools)].index.tolist() | |
# Load the test file and select rows based on indices | |
test = pd.read_csv('train.txt', sep=',', header=None, engine='python') | |
selected_rows_df2 = test.loc[indices] | |
# Save the selected rows to a file | |
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ') | |
# For demonstration purposes, we'll just return the content with the selected model name | |
if(model_name=="High Graduated Schools"): | |
finetune_task="highGRschool10" | |
elif(model_name== "Low Graduated Schools" ): | |
finetune_task="highGRschool10" | |
elif(model_name=="Full Set"): | |
finetune_task="highGRschool10" | |
else: | |
finetune_task=None | |
# print(checkpoint) | |
progress(0.1, desc="Files created and saved") | |
# if (inc_val<5): | |
# model_name="highGRschool10" | |
# elif(inc_val>=5 & inc_val<10): | |
# model_name="highGRschool10" | |
# else: | |
# model_name="highGRschool10" | |
progress(0.2, desc="Executing models") | |
subprocess.run([ | |
"python", "new_test_saved_finetuned_model.py", | |
"-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded", | |
"-finetune_task", "highGRschool10", | |
"-test_dataset_path","../../../../selected_rows.txt", | |
# "-test_label_path","../../../../train_label.txt", | |
"-finetuned_bert_classifier_checkpoint", | |
"ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42", | |
"-e",str(1), | |
"-b",str(1000) | |
]) | |
progress(0.6,desc="Model execution completed") | |
result = {} | |
with open("result.txt", 'r') as file: | |
for line in file: | |
key, value = line.strip().split(': ', 1) | |
# print(type(key)) | |
if key=='epoch': | |
result[key]=value | |
else: | |
result[key]=float(value) | |
# Create a plot | |
with open("roc_data.pkl", "rb") as f: | |
fpr, tpr, _ = pickle.load(f) | |
roc_auc = auc(fpr, tpr) | |
fig, ax = plt.subplots() | |
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') | |
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') | |
ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'ROC Curve: {model_name}') | |
ax.legend(loc="lower right") | |
ax.grid() | |
# Save plot to a file | |
plot_path = "plot.png" | |
fig.savefig(plot_path) | |
plt.close(fig) | |
progress(1.0) | |
# Prepare text output | |
text_output = f"Model: {model_name}\nResult:\n{result}" | |
# Prepare text output with HTML formatting | |
text_output = f""" | |
Model: {model_name}\n | |
Result Summary:\n | |
-----------------\n | |
Precision: {result['precisions']:.2f}\n | |
Recall: {result['recalls']:.2f}\n | |
Time Taken: {result['time_taken_from_start']:.2f} seconds\n | |
Total Schools in test: {len(unique_schools):.4f}\n | |
Total Schools taken: {len(random_schools):.4f}\n | |
High grad schools: {len(high_sample):.4f}\n | |
Low grad schools: {len(low_sample):.4f}\n | |
-----------------\n | |
Note: The ROC Curve is also displayed for the evaluation. | |
""" | |
return text_output,plot_path | |
# List of models for the dropdown menu | |
models = ["High Graduated Schools", "Low Graduated Schools", "Full Set"] | |
# Create the Gradio interface | |
with gr.Blocks(css=""" | |
body { | |
background-color: #1e1e1e!important; | |
font-family: 'Arial', sans-serif; | |
color: #f5f5f5!important;; | |
} | |
.gradio-container { | |
max-width: 850px!important; | |
margin: 0 auto!important;; | |
padding: 20px!important;; | |
background-color: #292929!important; | |
border-radius: 10px; | |
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.2); | |
} | |
.gradio-container-4-44-0 .prose h1 { | |
font-size: var(--text-xxl); | |
color: #ffffff!important; | |
} | |
#title { | |
color: white!important; | |
font-size: 2.3em; | |
font-weight: bold; | |
text-align: center!important; | |
margin-bottom: 20px; | |
} | |
.description { | |
text-align: center; | |
font-size: 1.1em; | |
color: #bfbfbf; | |
margin-bottom: 30px; | |
} | |
.file-box { | |
max-width: 180px; | |
padding: 5px; | |
background-color: #444!important; | |
border: 1px solid #666!important; | |
border-radius: 6px; | |
height: 80px!important;; | |
margin: 0 auto!important;; | |
text-align: center; | |
color: transparent; | |
} | |
.file-box span { | |
color: #f5f5f5!important; | |
font-size: 1em; | |
line-height: 45px; /* Vertically center text */ | |
} | |
.dropdown-menu { | |
max-width: 220px; | |
margin: 0 auto!important; | |
background-color: #444!important; | |
color:#444!important; | |
border-radius: 6px; | |
padding: 8px; | |
font-size: 1.1em; | |
border: 1px solid #666; | |
} | |
.button { | |
background-color: #4CAF50!important; | |
color: white!important; | |
font-size: 1.1em; | |
padding: 10px 25px; | |
border-radius: 6px; | |
cursor: pointer; | |
transition: background-color 0.2s ease-in-out; | |
} | |
.button:hover { | |
background-color: #45a049!important; | |
} | |
.output-text { | |
background-color: #333!important; | |
padding: 12px; | |
border-radius: 8px; | |
border: 1px solid #666; | |
font-size: 1.1em; | |
} | |
.footer { | |
text-align: center; | |
margin-top: 50px; | |
font-size: 0.9em; | |
color: #b0b0b0; | |
} | |
.svelte-12ioyct .wrap { | |
display: none !important; | |
} | |
.file-label-text { | |
display: none !important; | |
} | |
div.svelte-sfqy0y { | |
display: flex; | |
flex-direction: inherit; | |
flex-wrap: wrap; | |
gap: var(--form-gap-width); | |
box-shadow: var(--block-shadow); | |
border: var(--block-border-width) solid var(--border-color-primary); | |
border-radius: var(--block-radius); | |
background: #1f2937!important; | |
overflow-y: hidden; | |
} | |
.block.svelte-12cmxck { | |
position: relative; | |
margin: 0; | |
box-shadow: var(--block-shadow); | |
border-width: var(--block-border-width); | |
border-color: var(--block-border-color); | |
border-radius: var(--block-radius); | |
background: #1f2937!important; | |
width: 100%; | |
line-height: var(--line-sm); | |
} | |
.svelte-12ioyct .wrap { | |
display: none !important; | |
} | |
.file-label-text { | |
display: none !important; | |
} | |
input[aria-label="file upload"] { | |
display: none !important; | |
} | |
gradio-app .gradio-container.gradio-container-4-44-0 .contain .file-box span { | |
font-size: 1em; | |
line-height: 45px; | |
color: #1f2937 !important; | |
} | |
.wrap.svelte-12ioyct { | |
display: flex; | |
flex-direction: column; | |
justify-content: center; | |
align-items: center; | |
min-height: var(--size-60); | |
color: #1f2937 !important; | |
line-height: var(--line-md); | |
height: 100%; | |
padding-top: var(--size-3); | |
text-align: center; | |
margin: auto var(--spacing-lg); | |
} | |
span.svelte-1gfkn6j:not(.has-info) { | |
margin-bottom: var(--spacing-lg); | |
color: white!important; | |
} | |
label.float.svelte-1b6s6s { | |
position: relative!important; | |
top: var(--block-label-margin); | |
left: var(--block-label-margin); | |
} | |
label.svelte-1b6s6s { | |
display: inline-flex; | |
align-items: center; | |
z-index: var(--layer-2); | |
box-shadow: var(--block-label-shadow); | |
border: var(--block-label-border-width) solid var(--border-color-primary); | |
border-top: none; | |
border-left: none; | |
border-radius: var(--block-label-radius); | |
background: rgb(120 151 180)!important; | |
padding: var(--block-label-padding); | |
pointer-events: none; | |
color: #1f2937!important; | |
font-weight: var(--block-label-text-weight); | |
font-size: var(--block-label-text-size); | |
line-height: var(--line-sm); | |
} | |
.file.svelte-18wv37q.svelte-18wv37q { | |
display: block!important; | |
width: var(--size-full); | |
} | |
tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) { | |
background: ##7897b4!important; | |
color: white; | |
background: #aca7b2; | |
} | |
.gradio-container-4-31-4 .prose h1, .gradio-container-4-31-4 .prose h2, .gradio-container-4-31-4 .prose h3, .gradio-container-4-31-4 .prose h4, .gradio-container-4-31-4 .prose h5 { | |
color: white; | |
""") as demo: | |
gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title") | |
gr.Markdown("<p class='description'>Upload a .txt file and select a model from the dropdown menu.</p>") | |
with gr.Row(): | |
file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box") | |
label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box") | |
info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box") | |
model_dropdown = gr.Dropdown(choices=models, label="Select Finetune Task", elem_classes="dropdown-menu") | |
increment_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Schools Percentage", value=1) | |
with gr.Row(): | |
output_text = gr.Textbox(label="Output Text") | |
output_image = gr.Image(label="Output Plot") | |
btn = gr.Button("Submit") | |
btn.click(fn=process_file, inputs=[file_input,label_input,info_input,model_dropdown,increment_slider], outputs=[output_text,output_image]) | |
# Launch the app | |
demo.launch() |