Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from src.bert import BERT | |
class CustomBERTModel(nn.Module): | |
def __init__(self, vocab_size, output_dim, pre_trained_model_path): | |
super(CustomBERTModel, self).__init__() | |
hidden_size = 768 | |
self.bert = BERT(vocab_size=vocab_size, hidden=hidden_size, n_layers=4, attn_heads=8, dropout=0.1) | |
# Load the pre-trained model's state_dict | |
checkpoint = torch.load(pre_trained_model_path, map_location=torch.device('cpu')) | |
if isinstance(checkpoint, dict): | |
self.bert.load_state_dict(checkpoint) | |
else: | |
raise TypeError(f"Expected state_dict, got {type(checkpoint)} instead.") | |
# Fully connected layer with input size 768 (matching BERT hidden size) | |
self.fc = nn.Linear(hidden_size, output_dim) | |
def forward(self, sequence, segment_info): | |
sequence = sequence.to(next(self.parameters()).device) | |
segment_info = segment_info.to(sequence.device) | |
x = self.bert(sequence, segment_info) | |
print(f"BERT output shape: {x.shape}") | |
cls_embeddings = x[:, 0] # Extract CLS token embeddings | |
print(f"CLS Embeddings shape: {cls_embeddings.shape}") | |
logits = self.fc(cls_embeddings) # Pass tensor of size (batch_size, 768) to the fully connected layer | |
return logits | |