surokpro2's picture
Update app.py
61085ee verified
raw
history blame
15.7 kB
import gradio as gr
import os
import torch
from PIL import Image
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
from utils import add_feature_on_area
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from utils import add_feature_on_area, replace_with_feature
import threading
import spaces
code_to_block = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
lock = threading.Lock()
def process_cache(cache, saes_dict):
top_features_dict = {}
sparse_maps_dict = {}
for code in code_to_block.keys():
block = code_to_block[code]
sae = saes_dict[code]
diff = cache["output"][block] - cache["input"][block]
diff = diff.permute(0, 1, 3, 4, 2).squeeze(0).squeeze(0)
with torch.no_grad():
sparse_maps = sae.encode(diff)
averages = torch.mean(sparse_maps, dim=(0, 1))
top_features = torch.topk(averages, 10).indices
top_features_dict[code] = top_features.cpu().tolist()
sparse_maps_dict[code] = sparse_maps.cpu().numpy()
return top_features_dict, sparse_maps_dict
def plot_image_heatmap(cache, block_select, radio):
code = block_select.split()[0]
feature = int(radio)
block = code_to_block[code]
heatmap = cache["heatmaps"][code][:, :, feature]
heatmap = np.kron(heatmap, np.ones((32, 32)))
image = cache["image"].convert("RGBA")
jet = plt.cm.jet
cmap = jet(np.arange(jet.N))
cmap[:1, -1] = 0
cmap[1:, -1] = 0.6
cmap = ListedColormap(cmap)
heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap))
heatmap_rgba = cmap(heatmap)
heatmap_image = Image.fromarray((heatmap_rgba * 255).astype(np.uint8))
heatmap_with_transparency = Image.alpha_composite(image, heatmap_image)
return heatmap_with_transparency
def create_prompt_part(pipe, saes_dict, demo):
@spaces.GPU
def image_gen(prompt):
lock.acquire()
try:
images, cache = pipe.run_with_cache(
prompt,
positions_to_cache=list(code_to_block.values()),
num_inference_steps=1,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0,
save_input=True,
save_output=True
)
finally:
lock.release()
top_features_dict, top_sparse_maps_dict = process_cache(cache, saes_dict)
return images.images[0], {
"image": images.images[0],
"heatmaps": top_sparse_maps_dict,
"features": top_features_dict
}
def update_radio(cache, block_select):
code = block_select.split()[0]
return gr.update(choices=cache["features"][code])
def update_img(cache, block_select, radio):
new_img = plot_image_heatmap(cache, block_select, radio)
return new_img
with gr.Tab("Explore", elem_classes="tabs") as explore_tab:
cache = gr.State(value={
"image": None,
"heatmaps": None,
"features": []
})
with gr.Row():
with gr.Column(scale=7):
with gr.Row(equal_height=True):
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party and eathing a dish with peas.")
button = gr.Button("Generate", elem_classes="generate_button1")
with gr.Row():
image = gr.Image(width=512, height=512, image_mode="RGB", label="Generated image")
with gr.Column(scale=4):
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block",
elem_id="block_select",
interactive=True
)
radio = gr.Radio(choices=[], label="Select a feature", interactive=True)
button.click(image_gen, [prompt_field], outputs=[image, cache])
cache.change(update_radio, [cache, block_select], outputs=[radio])
block_select.select(update_radio, [cache, block_select], outputs=[radio])
radio.select(update_img, [cache, block_select, radio], outputs=[image])
demo.load(image_gen, [prompt_field], outputs=[image, cache])
return explore_tab
def downsample_mask(image, factor):
downsampled = image.reshape(
(image.shape[0] // factor, factor,
image.shape[1] // factor, factor)
)
downsampled = downsampled.mean(axis=(1, 3))
return downsampled
def create_intervene_part(pipe: HookedStableDiffusionXLPipeline, saes_dict, means_dict, demo):
@spaces.GPU
def image_gen(prompt, num_steps):
lock.acquire()
try:
images = pipe.run_with_hooks(
prompt,
position_hook_dict={},
num_inference_steps=num_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
)
finally:
lock.release()
return images.images[0]
@spaces.GPU
def image_mod(prompt, block_str, brush_index, strength, num_steps, input_image):
block = block_str.split(" ")[0]
mask = (input_image["layers"][0] > 0)[:, :, -1].astype(float)
mask = downsample_mask(mask, 32)
mask = torch.tensor(mask, dtype=torch.float32, device="cuda")
if mask.sum() == 0:
gr.Info("No mask selected, please draw on the input image")
def hook(module, input, output):
return add_feature_on_area(
saes_dict[block],
brush_index,
mask * means_dict[block][brush_index] * strength,
module,
input,
output
)
lock.acquire()
try:
image = pipe.run_with_hooks(
prompt,
position_hook_dict={code_to_block[block]: hook},
num_inference_steps=num_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
).images[0]
finally:
lock.release()
return image
@spaces.GPU
def feature_icon(block_str, brush_index):
block = block_str.split(" ")[0]
if block in ["mid.0", "up.0.0"]:
gr.Info("Note that Feature Icon works best with down.2.1 and up.0.1 blocks but feel free to explore", duration=3)
def hook(module, input, output):
return replace_with_feature(
saes_dict[block],
brush_index,
means_dict[block][brush_index] * saes_dict[block].k,
module,
input,
output
)
lock.acquire()
try:
image = pipe.run_with_hooks(
"",
position_hook_dict={code_to_block[block]: hook},
num_inference_steps=1,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
).images[0]
finally:
lock.release()
return image
with gr.Tab("Paint!", elem_classes="tabs") as intervene_tab:
image_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=3):
# Generation column
with gr.Row():
# prompt and num_steps
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A dog plays with a ball, cartoon", elem_id="prompt_input")
num_steps = gr.Number(value=1, label="Number of steps", minimum=1, maximum=4, elem_id="num_steps", precision=0)
with gr.Row():
# Generate button
button_generate = gr.Button("Generate", elem_id="generate_button")
with gr.Column(scale=3):
# Intervention column
with gr.Row():
# dropdowns and number inputs
with gr.Column(scale=7):
with gr.Row():
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block",
elem_id="block_select"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, elem_id="brush_index", precision=0)
with gr.Row():
button_icon = gr.Button('Feature Icon', elem_id="feature_icon_button")
with gr.Column(scale=3):
with gr.Row():
strength = gr.Number(value=10, label="Strength", minimum=-40, maximum=40, elem_id="strength", precision=2)
with gr.Row():
button = gr.Button('Apply', elem_id="apply_button")
with gr.Row():
with gr.Column():
# Input image
i_image = gr.Sketchpad(
# height=610,
layers=False, transforms=[], placeholder="Generate and paint!",
brush=gr.Brush(default_size=64, color_mode="fixed", colors=['black']),
container=False,
# canvas_size=(512, 512),
label="Input Image")
clear_button = gr.Button("Clear")
clear_button.click(lambda x: x, [image_state], [i_image])
# Output image
o_image = gr.Image(width=512, height=512, label="Output Image")
# Set up the click events
button_generate.click(image_gen, inputs=[prompt_field, num_steps], outputs=[image_state])
image_state.change(lambda x: x, [image_state], [i_image])
button.click(image_mod,
inputs=[prompt_field, block_select, brush_index, strength, num_steps, i_image],
outputs=o_image)
button_icon.click(feature_icon, inputs=[block_select, brush_index], outputs=o_image)
demo.load(image_gen, [prompt_field, num_steps], outputs=[image_state])
return intervene_tab
def create_top_images_part(demo):
def update_top_images(block_select, brush_index):
block = block_select.split(" ")[0]
url = f"https://huggingface.co/surokpro2/sdxl_sae_images/resolve/main/{block}/{brush_index}.jpg"
return url
with gr.Tab("Top Images", elem_classes="tabs") as top_images_tab:
with gr.Row():
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, precision=0)
with gr.Row():
image = gr.Image(width=600, height=600, label="Top Images")
block_select.select(update_top_images, [block_select, brush_index], outputs=[image])
brush_index.change(update_top_images, [block_select, brush_index], outputs=[image])
demo.load(update_top_images, [block_select, brush_index], outputs=[image])
return top_images_tab
def create_intro_part():
with gr.Tab("Instructions", elem_classes="tabs") as intro_tab:
gr.Markdown(
'''# Unpacking SDXL Turbo with Sparse Autoencoders
## Demo Overview
This demo showcases the use of Sparse Autoencoders (SAEs) to understand the features learned by the Stable Diffusion XL Turbo model.
## How to Use
### Explore
* Enter a prompt in the text box and click on the "Generate" button to generate an image.
* You can observe the active features in different blocks plot on top of the generated image.
### Top Images
* For each feature, you can view the top images that activate the feature the most.
### Paint!
* Generate an image using the prompt.
* Paint on the generated image to apply interventions.
* Use the "Feature Icon" button to understand how the selected brush functions.
### Remarks
* Not all brushes mix well with all images. Experiment with different brushes and strengths.
* Feature Icon works best with `down.2.1 (composition)` and `up.0.1 (style)` blocks.
* This demo is provided for research purposes only. We do not take responsibility for the content generated by the demo.
### Interesting features to try
To get started, try the following features:
- down.2.1 (composition): 2301 (evil) 3747 (image frame) 4998 (cartoon)
- up.0.1 (style): 4977 (tiger stripes) 90 (fur) 2615 (twilight blur)
'''
)
return intro_tab
def create_demo(pipe, saes_dict, means_dict):
custom_css = """
.tabs button {
font-size: 20px !important; /* Adjust font size for tab text */
padding: 10px !important; /* Adjust padding to make the tabs bigger */
font-weight: bold !important; /* Adjust font weight to make the text bold */
}
.generate_button1 {
max-width: 160px !important;
margin-top: 20px !important;
margin-bottom: 20px !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
with create_intro_part():
pass
with create_prompt_part(pipe, saes_dict, demo):
pass
with create_top_images_part(demo):
pass
with create_intervene_part(pipe, saes_dict, means_dict, demo):
pass
return demo
if __name__ == "__main__":
import os
import gradio as gr
import torch
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
dtype=torch.float32
pipe = HookedStableDiffusionXLPipeline.from_pretrained(
'stabilityai/sdxl-turbo',
torch_dtype=dtype,
variant=("fp16" if dtype==torch.float16 else None)
)
pipe.set_progress_bar_config(disable=True)
pipe.to('cuda')
path_to_checkpoints = './checkpoints/'
code_to_block = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
saes_dict = {}
means_dict = {}
for code, block in code_to_block.items():
sae = SparseAutoencoder.load_from_disk(
os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final"),
)
means = torch.load(
os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final", "mean.pt"),
weights_only=True
)
saes_dict[code] = sae.to('cuda', dtype=dtype)
means_dict[code] = means.to('cuda', dtype=dtype)
demo = create_demo(pipe, saes_dict, means_dict)
demo.launch()