suriya7 commited on
Commit
66f2e72
1 Parent(s): 252515d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from streamlit_chat import message
4
+ from langchain.prompts import PromptTemplate
5
+ from langchain import LLMChain
6
+ from langchain_community.llms.huggingface_hub import HuggingFaceHub
7
+
8
+ llm = HuggingFaceHub(repo_id="suriya7/MaxMini-Instruct-248M",
9
+ task ='text2text-generation',
10
+ huggingfacehub_api_token=os.getenv('HF_TOKEN'),
11
+ model_kwargs={
12
+ "do_sample":True,
13
+ "max_new_tokens":250
14
+ })
15
+
16
+
17
+ template = """
18
+ Please Answer the Question:
19
+ previous chat: {previous_history}
20
+ Human:{question}
21
+ chatbot:
22
+ """
23
+
24
+ prompt = PromptTemplate(template=template,input_variables=['question','previous_history'])
25
+
26
+ llm_chain = LLMChain(
27
+ llm=llm,
28
+ prompt=prompt,
29
+ verbose=True,
30
+ )
31
+
32
+ previous_response = ""
33
+ def conversational_chat(user_query):
34
+ previous_response = "".join([f"Human: {i[0]}\nChatbot: {i[1]}" for i in st.session_state['history'] if i is not None])
35
+ result = llm_chain.predict(
36
+ question=user_query,
37
+ previous_history = previous_response
38
+ )
39
+ st.session_state['history'].append((user_query, result))
40
+ return result
41
+
42
+
43
+ st.title('MaxMini')
44
+ st.info("MaxMini-Instruct-248M is a T5 (Text-To-Text Transfer Transformer) model fine-tuned on a variety of tasks. This model is designed to perform a range of instructional tasks, enabling users to generate instructions for various inputs.")
45
+
46
+ st.session_state['history'] = []
47
+
48
+ if 'message' not in st.session_state:
49
+ st.session_state['message'] = ['Hey There! How Can I Assist You']
50
+
51
+ st.session_state['past'] = []
52
+
53
+
54
+ # Create containers for chat history and user input
55
+ response_container = st.container()
56
+ container = st.container()
57
+
58
+ # User input form
59
+ user_input = st.chat_input("Ask Your Questions 👉..")
60
+ with container:
61
+ if user_input:
62
+ output = conversational_chat(user_input)
63
+ # answer = response_generator(output)
64
+ st.session_state['past'].append(user_input)
65
+ st.session_state['message'].append(output)
66
+
67
+
68
+ # Display chat history
69
+ if st.session_state['message']:
70
+ with response_container:
71
+ for i in range(len(st.session_state['message'])):
72
+ if i != 0:
73
+ message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="adventurer")
74
+ message(st.session_state["message"][i], key=str(i), avatar_style="bottts")