suriya7 commited on
Commit
16d0d57
·
verified ·
1 Parent(s): 3692017

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -23
app.py CHANGED
@@ -20,18 +20,24 @@ llm = ChatGoogleGenerativeAI(model="gemini-pro",
20
 
21
 
22
 
23
- template = """You are a friendly chatbot called "CRETA" who give clear an well having a conversation with a human and you are created by suriya an AI Enthusiastic.
24
- provied_url_extracted_text:
25
- {extracted_text}
26
- provided document:
27
- {provided_docs}
28
- previous_chat:
29
  {chat_history}
 
 
 
 
 
 
 
30
  Human: {human_input}
31
- Chatbot:"""
32
 
33
  prompt = PromptTemplate(
34
- input_variables=["chat_history", "human_input", "provided_docs","extracted_text"], template=template
 
35
  )
36
 
37
  llm_chain = LLMChain(
@@ -44,22 +50,17 @@ llm_chain = LLMChain(
44
  previous_response = ""
45
  provided_docs = ""
46
  def conversational_chat(query):
47
- global previous_response, provided_docs
48
- for i in st.session_state['history']:
49
- if i is not None:
50
- previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}"
51
- docs = ""
52
- for j in st.session_state["docs"]:
53
- if j is not None:
54
- docs += j
55
- text = ""
56
- for k in st.session_state["extracted_text"]:
57
- if k is not None:
58
- docs += k
59
 
60
- # ex_text = st.session_state["extracted_text"]
61
- provided_docs = docs
62
- result = llm_chain.predict(chat_history=previous_response, human_input=query, provided_docs=provided_docs,extracted_text=text)
 
 
 
63
  st.session_state['history'].append((query, result))
64
  return result
65
 
 
20
 
21
 
22
 
23
+ template = """
24
+ You are CRETA, a friendly and knowledgeable chatbot created by Suriya, an AI enthusiast. You can access and understand the content from provided documents and websites to help answer questions.
25
+
26
+ Previous Conversation:
 
 
27
  {chat_history}
28
+
29
+ Provided Document Content:
30
+ {provided_docs}
31
+
32
+ Extracted URL Text:
33
+ {extracted_text}
34
+
35
  Human: {human_input}
36
+ Chatbot: """
37
 
38
  prompt = PromptTemplate(
39
+ input_variables=["chat_history", "human_input", "provided_docs", "extracted_text"],
40
+ template=template
41
  )
42
 
43
  llm_chain = LLMChain(
 
50
  previous_response = ""
51
  provided_docs = ""
52
  def conversational_chat(query):
53
+ global previous_response, provided_docs, extracted_text
54
+ previous_response = "".join([f"Human: {i[0]}\nChatbot: {i[1]}" for i in st.session_state['history'] if i is not None])
55
+ provided_docs = "".join([doc for doc in st.session_state["docs"] if doc is not None])
56
+ extracted_text = "".join([text for text in st.session_state["extracted_text"] if text is not None])
 
 
 
 
 
 
 
 
57
 
58
+ result = llm_chain.predict(
59
+ chat_history=previous_response,
60
+ human_input=query,
61
+ provided_docs=provided_docs,
62
+ extracted_text=extracted_text
63
+ )
64
  st.session_state['history'].append((query, result))
65
  return result
66