surahj
		
	commited on
		
		
					Commit 
							
							·
						
						9ccab89
	
1
								Parent(s):
							
							9dff778
								
Update readme
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -1,79 +1,58 @@ 
     | 
|
| 1 | 
         
            -
             
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
              - synthetic-electricity-data
         
     | 
| 21 | 
         
            -
            metrics:
         
     | 
| 22 | 
         
            -
              - mse
         
     | 
| 23 | 
         
            -
              - rmse
         
     | 
| 24 | 
         
            -
              - mae
         
     | 
| 25 | 
         
            -
              - r2
         
     | 
| 26 | 
         
            -
            library_name: scikit-learn
         
     | 
| 27 | 
         
            -
            ---
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            # ⚡ Electricity Consumption Predictor
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
            A machine learning application that predicts daily electricity consumption based on various factors like temperature, day of the week, and special events.
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
            ## 🚀 Live Demo
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
            [](https://huggingface.co/spaces/surahj/electricity-consumption-predictor)
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
            ## 📊 Features
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
            - **Temperature-based predictions**: Considers how temperature affects electricity usage
         
     | 
| 40 | 
         
            -
            - **Day of week analysis**: Accounts for different consumption patterns on weekdays vs weekends
         
     | 
| 41 | 
         
            -
            - **Special events**: Factors in holidays and major events
         
     | 
| 42 | 
         
            -
            - **Interactive interface**: User-friendly Gradio web interface
         
     | 
| 43 | 
         
            -
            - **Model insights**: Detailed explanation of prediction factors
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
            ## 🛠️ Technology Stack
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            - **Machine Learning**: scikit-learn (Linear Regression)
         
     | 
| 48 | 
         
            -
            - **Data Processing**: pandas, numpy
         
     | 
| 49 | 
         
            -
            - **Web Interface**: Gradio
         
     | 
| 50 | 
         
            -
            - **Model Persistence**: joblib
         
     | 
| 51 | 
         | 
| 52 | 
         
             
            ## 🏗️ Project Structure
         
     | 
| 53 | 
         | 
| 54 | 
         
             
            ```
         
     | 
| 
         | 
|
| 55 | 
         
             
            ├── src/
         
     | 
| 56 | 
         
            -
            │   ├──  
     | 
| 57 | 
         
            -
            │   ├──  
     | 
| 58 | 
         
            -
            │    
     | 
| 
         | 
|
| 59 | 
         
             
            ├── tests/
         
     | 
| 60 | 
         
            -
            │   ├──  
     | 
| 61 | 
         
            -
            │   ├──  
     | 
| 62 | 
         
            -
            │    
     | 
| 63 | 
         
            -
            ├──  
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 66 | 
         
             
            ```
         
     | 
| 67 | 
         | 
| 68 | 
         
            -
            ##  
     | 
| 
         | 
|
| 
         | 
|
| 69 | 
         | 
| 70 | 
         
            -
             
     | 
| 
         | 
|
| 71 | 
         | 
| 72 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 73 | 
         | 
| 74 | 
         
             
               ```bash
         
     | 
| 75 | 
         
            -
               git clone  
     | 
| 76 | 
         
            -
               cd  
     | 
| 77 | 
         
             
               ```
         
     | 
| 78 | 
         | 
| 79 | 
         
             
            2. **Install dependencies**:
         
     | 
| 
         @@ -85,67 +64,235 @@ A machine learning application that predicts daily electricity consumption based 
     | 
|
| 85 | 
         
             
            3. **Run the application**:
         
     | 
| 86 | 
         | 
| 87 | 
         
             
               ```bash
         
     | 
| 88 | 
         
            -
               python app.py
         
     | 
| 89 | 
         
             
               ```
         
     | 
| 90 | 
         | 
| 91 | 
         
            -
            4. ** 
     | 
| 92 | 
         
            -
               ```bash
         
     | 
| 93 | 
         
            -
               pytest tests/
         
     | 
| 94 | 
         
            -
               ```
         
     | 
| 95 | 
         | 
| 96 | 
         
            -
             
     | 
| 97 | 
         | 
| 98 | 
         
            -
             
     | 
| 99 | 
         | 
| 100 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 101 | 
         | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
            2. **Model Training**: Trains a linear regression model on historical data
         
     | 
| 104 | 
         
            -
            3. **Feature Engineering**: Extracts relevant features (temperature, day of week, events)
         
     | 
| 105 | 
         
            -
            4. **Prediction**: Uses the trained model to predict consumption for new scenarios
         
     | 
| 106 | 
         
            -
            5. **Interpretation**: Provides detailed breakdown of prediction factors
         
     | 
| 107 | 
         | 
| 108 | 
         
            -
             
     | 
| 109 | 
         | 
| 110 | 
         
            -
             
     | 
| 111 | 
         
            -
             
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
            - **Event Impact**: Special events can significantly affect consumption
         
     | 
| 114 | 
         | 
| 115 | 
         
            -
             
     | 
| 
         | 
|
| 116 | 
         | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
             
     | 
| 120 | 
         
            -
            | 35°C        | Saturday  | Holiday | 22.3 kWh              |
         
     | 
| 121 | 
         
            -
            | 15°C        | Wednesday | None    | 14.1 kWh              |
         
     | 
| 122 | 
         | 
| 123 | 
         
            -
             
     | 
| 124 | 
         | 
| 125 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 126 | 
         | 
| 127 | 
         
            -
             
     | 
| 128 | 
         
            -
            - 
     | 
| 129 | 
         
            -
            - Model hyperparameters
         
     | 
| 130 | 
         | 
| 131 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 132 | 
         | 
| 133 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 134 | 
         | 
| 135 | 
         
             
            ```bash
         
     | 
| 136 | 
         
            -
            #  
     | 
| 137 | 
         
            -
            pytest  
     | 
| 138 | 
         | 
| 139 | 
         
            -
            # Run  
     | 
| 140 | 
         
            -
            pytest  
     | 
| 141 | 
         | 
| 142 | 
         
            -
            # Run  
     | 
| 143 | 
         
            -
            pytest  
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 144 | 
         
             
            ```
         
     | 
| 145 | 
         | 
| 146 | 
         
            -
            ##  
     | 
| 147 | 
         | 
| 148 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 149 | 
         | 
| 150 | 
         
             
            ## 🤝 Contributing
         
     | 
| 151 | 
         | 
| 
         @@ -153,16 +300,15 @@ This project is licensed under the MIT License - see the LICENSE file for detail 
     | 
|
| 153 | 
         
             
            2. Create a feature branch
         
     | 
| 154 | 
         
             
            3. Make your changes
         
     | 
| 155 | 
         
             
            4. Add tests for new functionality
         
     | 
| 156 | 
         
            -
            5.  
     | 
| 
         | 
|
| 157 | 
         | 
| 158 | 
         
            -
            ##  
     | 
| 159 | 
         | 
| 160 | 
         
            -
             
     | 
| 161 | 
         
            -
             
     | 
| 162 | 
         
            -
            - Open an issue on GitHub
         
     | 
| 163 | 
         
            -
            - Check the Hugging Face Spaces discussion
         
     | 
| 164 | 
         
            -
            - Review the test files for usage examples
         
     | 
| 165 | 
         | 
| 166 | 
         
            -
             
     | 
| 167 | 
         | 
| 168 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Daily Household Electricity Consumption Predictor
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            A web-based application designed to help Nigerian households estimate their daily electricity usage in Kilowatt-hours (kWh). This project serves as a practical learning vehicle for Machine Learning Operations (MLOps), covering the full lifecycle from data preparation and model training to deployment, monitoring, and continuous improvement.
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            ## 🎯 Project Goals
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            ### Business Goals
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            - **Empower Households**: Provide users with a simple, accessible tool to understand and predict their daily electricity consumption
         
     | 
| 10 | 
         
            +
            - **Promote Energy Awareness**: Help users identify factors influencing their electricity usage, encouraging more efficient energy habits
         
     | 
| 11 | 
         
            +
            - **Inform Budgeting**: Enable users to better estimate their electricity bills, reducing financial surprises
         
     | 
| 12 | 
         
            +
            - **Foundational MLOps Learning**: Serve as a concrete project to apply and understand core MLOps principles
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            ### Machine Learning & Technical Goals
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            - **Accurate Prediction**: Develop a regression model capable of predicting daily kWh consumption with acceptable accuracy
         
     | 
| 17 | 
         
            +
            - **User-Friendly Interface**: Create an intuitive web interface that allows easy input of features and clear display of predictions
         
     | 
| 18 | 
         
            +
            - **Deployable Application**: Build a self-contained application that can be deployed to a public platform
         
     | 
| 19 | 
         
            +
            - **MLOps Readiness**: Design the application with modularity and best practices that facilitate future MLOps implementation
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 20 | 
         | 
| 21 | 
         
             
            ## 🏗️ Project Structure
         
     | 
| 22 | 
         | 
| 23 | 
         
             
            ```
         
     | 
| 24 | 
         
            +
            lin-re-model/
         
     | 
| 25 | 
         
             
            ├── src/
         
     | 
| 26 | 
         
            +
            │   ├── __init__.py
         
     | 
| 27 | 
         
            +
            │   ├── data_generator.py      # Synthetic data generation
         
     | 
| 28 | 
         
            +
            │   ├── model.py              # ML model training and prediction
         
     | 
| 29 | 
         
            +
            │   └── app.py                # Gradio web interface
         
     | 
| 30 | 
         
             
            ├── tests/
         
     | 
| 31 | 
         
            +
            │   ├── __init__.py
         
     | 
| 32 | 
         
            +
            │   ├── test_data_generator.py # Data generator tests
         
     | 
| 33 | 
         
            +
            │   ├── test_model.py         # Model tests
         
     | 
| 34 | 
         
            +
            │   ├── test_app.py           # Application tests
         
     | 
| 35 | 
         
            +
            │   └── test_integration.py   # Integration tests
         
     | 
| 36 | 
         
            +
            ├── requirements.txt          # Python dependencies
         
     | 
| 37 | 
         
            +
            ├── pytest.ini              # Pytest configuration
         
     | 
| 38 | 
         
            +
            ├── run_tests.py            # Test runner script
         
     | 
| 39 | 
         
            +
            └── README.md               # This file
         
     | 
| 40 | 
         
             
            ```
         
     | 
| 41 | 
         | 
| 42 | 
         
            +
            ## 🚀 Quick Start
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            ### Prerequisites
         
     | 
| 45 | 
         | 
| 46 | 
         
            +
            - Python 3.8 or higher
         
     | 
| 47 | 
         
            +
            - pip (Python package installer)
         
     | 
| 48 | 
         | 
| 49 | 
         
            +
            ### Installation
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            1. **Clone the repository** (if not already done):
         
     | 
| 52 | 
         | 
| 53 | 
         
             
               ```bash
         
     | 
| 54 | 
         
            +
               git clone <repository-url>
         
     | 
| 55 | 
         
            +
               cd lin-re-model
         
     | 
| 56 | 
         
             
               ```
         
     | 
| 57 | 
         | 
| 58 | 
         
             
            2. **Install dependencies**:
         
     | 
| 
         | 
|
| 64 | 
         
             
            3. **Run the application**:
         
     | 
| 65 | 
         | 
| 66 | 
         
             
               ```bash
         
     | 
| 67 | 
         
            +
               python src/app.py
         
     | 
| 68 | 
         
             
               ```
         
     | 
| 69 | 
         | 
| 70 | 
         
            +
            4. **Open your browser** and navigate to `http://localhost:7860`
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 71 | 
         | 
| 72 | 
         
            +
            ## 🧪 Testing
         
     | 
| 73 | 
         | 
| 74 | 
         
            +
            This project includes comprehensive tests to ensure code quality and functionality. The test suite covers:
         
     | 
| 75 | 
         | 
| 76 | 
         
            +
            - **Unit Tests**: Individual component testing
         
     | 
| 77 | 
         
            +
            - **Integration Tests**: End-to-end workflow testing
         
     | 
| 78 | 
         
            +
            - **Data Quality Tests**: Validation of synthetic data generation
         
     | 
| 79 | 
         
            +
            - **Model Performance Tests**: Verification of model accuracy and consistency
         
     | 
| 80 | 
         | 
| 81 | 
         
            +
            ### Running Tests
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 82 | 
         | 
| 83 | 
         
            +
            #### Option 1: Using the test runner script
         
     | 
| 84 | 
         | 
| 85 | 
         
            +
            ```bash
         
     | 
| 86 | 
         
            +
            # Run all tests with coverage
         
     | 
| 87 | 
         
            +
            python run_tests.py
         
     | 
| 
         | 
|
| 88 | 
         | 
| 89 | 
         
            +
            # Run only unit tests
         
     | 
| 90 | 
         
            +
            python run_tests.py unit
         
     | 
| 91 | 
         | 
| 92 | 
         
            +
            # Run only integration tests
         
     | 
| 93 | 
         
            +
            python run_tests.py integration
         
     | 
| 94 | 
         
            +
            ```
         
     | 
| 
         | 
|
| 
         | 
|
| 95 | 
         | 
| 96 | 
         
            +
            #### Option 2: Using pytest directly
         
     | 
| 97 | 
         | 
| 98 | 
         
            +
            ```bash
         
     | 
| 99 | 
         
            +
            # Run all tests
         
     | 
| 100 | 
         
            +
            pytest
         
     | 
| 101 | 
         | 
| 102 | 
         
            +
            # Run with verbose output
         
     | 
| 103 | 
         
            +
            pytest -v
         
     | 
| 
         | 
|
| 104 | 
         | 
| 105 | 
         
            +
            # Run with coverage report
         
     | 
| 106 | 
         
            +
            pytest --cov=src --cov-report=html
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
            # Run specific test file
         
     | 
| 109 | 
         
            +
            pytest tests/test_model.py
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            # Run specific test class
         
     | 
| 112 | 
         
            +
            pytest tests/test_model.py::TestElectricityConsumptionModel
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            # Run specific test method
         
     | 
| 115 | 
         
            +
            pytest tests/test_model.py::TestElectricityConsumptionModel::test_train_model
         
     | 
| 116 | 
         
            +
            ```
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            ### Test Coverage
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
            The test suite provides comprehensive coverage including:
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
            - **Data Generator Tests**:
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
              - Data generation with different parameters
         
     | 
| 125 | 
         
            +
              - Data splitting functionality
         
     | 
| 126 | 
         
            +
              - Data persistence (save/load)
         
     | 
| 127 | 
         
            +
              - Data quality validation
         
     | 
| 128 | 
         
            +
              - Reproducibility checks
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            - **Model Tests**:
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
              - Model initialization and training
         
     | 
| 133 | 
         
            +
              - Feature preparation and validation
         
     | 
| 134 | 
         
            +
              - Prediction functionality
         
     | 
| 135 | 
         
            +
              - Model evaluation metrics
         
     | 
| 136 | 
         
            +
              - Model persistence (save/load)
         
     | 
| 137 | 
         
            +
              - Error handling
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
            - **Application Tests**:
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
              - Web interface functionality
         
     | 
| 142 | 
         
            +
              - User interaction flows
         
     | 
| 143 | 
         
            +
              - Error handling in UI
         
     | 
| 144 | 
         
            +
              - State management
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
            - **Integration Tests**:
         
     | 
| 147 | 
         
            +
              - Complete workflow testing
         
     | 
| 148 | 
         
            +
              - End-to-end functionality
         
     | 
| 149 | 
         
            +
              - Performance consistency
         
     | 
| 150 | 
         
            +
              - Data quality across components
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
            ### Expected Test Results
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
            When all tests pass, you should see output similar to:
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
            ```
         
     | 
| 157 | 
         
            +
            🧪 Running Daily Household Electricity Consumption Predictor Tests
         
     | 
| 158 | 
         
            +
            ======================================================================
         
     | 
| 159 | 
         
            +
            ============================= test session starts ==============================
         
     | 
| 160 | 
         
            +
            platform linux -- Python 3.8.x, pytest-7.4.0, pluggy-1.0.0
         
     | 
| 161 | 
         
            +
            rootdir: /path/to/lin-re-model
         
     | 
| 162 | 
         
            +
            plugins: cov-4.1.0
         
     | 
| 163 | 
         
            +
            collected 45 tests
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            tests/test_app.py ...................                              [ 42%]
         
     | 
| 166 | 
         
            +
            tests/test_data_generator.py ...................                  [ 78%]
         
     | 
| 167 | 
         
            +
            tests/test_integration.py ..........                              [100%]
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            ---------- coverage: platform linux, python 3.8.x-final-0 -----------
         
     | 
| 170 | 
         
            +
            Name                           Stmts   Miss  Cover   Missing
         
     | 
| 171 | 
         
            +
            ------------------------------------------------------------
         
     | 
| 172 | 
         
            +
            src/__init__.py                    1      0   100%
         
     | 
| 173 | 
         
            +
            src/app.py                       180      5    97%   180-185
         
     | 
| 174 | 
         
            +
            src/data_generator.py             95      2    98%   95-97
         
     | 
| 175 | 
         
            +
            src/model.py                     180      8    96%   180-188
         
     | 
| 176 | 
         
            +
            ------------------------------------------------------------
         
     | 
| 177 | 
         
            +
            TOTAL                           456     15    97%
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
            ============================== 45 passed in 5.23s ==============================
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
            ✅ All tests passed!
         
     | 
| 182 | 
         
            +
            ```
         
     | 
| 183 | 
         | 
| 184 | 
         
            +
            ## 📊 Model Features
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
            The electricity consumption prediction model uses the following features:
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
            1. **Average Daily Temperature** (°C): Numerical input (15-35°C range)
         
     | 
| 189 | 
         
            +
            2. **Day of the Week**: Categorical input (Monday through Sunday)
         
     | 
| 190 | 
         
            +
            3. **Major Event**: Boolean input (Holiday, Power Outage, etc.)
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
            ### Model Algorithm
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
            - **Algorithm**: Linear Regression
         
     | 
| 195 | 
         
            +
            - **Preprocessing**: StandardScaler for numerical features, OneHotEncoder for categorical features
         
     | 
| 196 | 
         
            +
            - **Evaluation Metrics**: MSE, RMSE, MAE, R²
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
            ## 🎮 Using the Application
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
            ### Step 1: Generate Data & Train Model
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
            1. Navigate to the "Data Generation & Training" tab
         
     | 
| 203 | 
         
            +
            2. Adjust parameters as desired:
         
     | 
| 204 | 
         
            +
               - Number of Data Points (100-5000)
         
     | 
| 205 | 
         
            +
               - Noise Level (0.01-0.5)
         
     | 
| 206 | 
         
            +
               - Training/Validation/Test Set Proportions
         
     | 
| 207 | 
         
            +
            3. Click "Generate Data & Train Model"
         
     | 
| 208 | 
         
            +
            4. Review the training metrics and evaluation results
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
            ### Step 2: Make Predictions
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
            1. Navigate to the "Prediction" tab
         
     | 
| 213 | 
         
            +
            2. Enter your parameters:
         
     | 
| 214 | 
         
            +
               - Average Daily Temperature (15-35°C)
         
     | 
| 215 | 
         
            +
               - Day of the Week
         
     | 
| 216 | 
         
            +
               - Major Event (checkbox)
         
     | 
| 217 | 
         
            +
            3. Click "Predict Consumption"
         
     | 
| 218 | 
         
            +
            4. View your estimated daily electricity consumption
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
            ### Step 3: Understand the Model
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
            1. Navigate to the "Model Information" tab
         
     | 
| 223 | 
         
            +
            2. Click "Show Model Information"
         
     | 
| 224 | 
         
            +
            3. Review feature coefficients and model interpretation
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
            ## 🔧 Development
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
            ### Adding New Tests
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
            To add new tests:
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
            1. **Unit Tests**: Add to appropriate test file in `tests/`
         
     | 
| 233 | 
         
            +
            2. **Integration Tests**: Add to `tests/test_integration.py`
         
     | 
| 234 | 
         
            +
            3. **Follow naming convention**: `test_<functionality>`
         
     | 
| 235 | 
         
            +
            4. **Use descriptive docstrings**: Explain what the test validates
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
            ### Test Best Practices
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
            - **Isolation**: Each test should be independent
         
     | 
| 240 | 
         
            +
            - **Descriptive names**: Test names should clearly indicate what they test
         
     | 
| 241 | 
         
            +
            - **Assertions**: Use specific assertions with meaningful messages
         
     | 
| 242 | 
         
            +
            - **Coverage**: Aim for high test coverage (>95%)
         
     | 
| 243 | 
         
            +
            - **Performance**: Tests should run quickly (<10 seconds total)
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
            ### Running Tests in Development
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
            During development, you can run tests in different ways:
         
     | 
| 248 | 
         | 
| 249 | 
         
             
            ```bash
         
     | 
| 250 | 
         
            +
            # Quick test run (no coverage)
         
     | 
| 251 | 
         
            +
            pytest -x  # Stop on first failure
         
     | 
| 252 | 
         | 
| 253 | 
         
            +
            # Run tests in parallel (if pytest-xdist installed)
         
     | 
| 254 | 
         
            +
            pytest -n auto
         
     | 
| 255 | 
         | 
| 256 | 
         
            +
            # Run tests with detailed output
         
     | 
| 257 | 
         
            +
            pytest -v -s
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
            # Run tests and watch for changes
         
     | 
| 260 | 
         
            +
            pytest-watch  # Requires pytest-watch package
         
     | 
| 261 | 
         
             
            ```
         
     | 
| 262 | 
         | 
| 263 | 
         
            +
            ## 🚀 Deployment
         
     | 
| 264 | 
         | 
| 265 | 
         
            +
            ### Local Deployment
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
            ```bash
         
     | 
| 268 | 
         
            +
            python src/app.py
         
     | 
| 269 | 
         
            +
            ```
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
            ### Hugging Face Spaces Deployment
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
            1. Create a new Space on Hugging Face
         
     | 
| 274 | 
         
            +
            2. Upload the project files
         
     | 
| 275 | 
         
            +
            3. Configure the Space to run `python src/app.py`
         
     | 
| 276 | 
         
            +
            4. The application will be available at your Space URL
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
            ## 📈 Future Enhancements
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
            ### MLOps Features (Future Phases)
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
            - **Data Versioning**: Implement DVC for data version control
         
     | 
| 283 | 
         
            +
            - **Experiment Tracking**: Integrate MLflow or Weights & Biases
         
     | 
| 284 | 
         
            +
            - **Model Registry**: Use MLflow Model Registry for model lifecycle management
         
     | 
| 285 | 
         
            +
            - **Containerization**: Create Dockerfile for reproducible environments
         
     | 
| 286 | 
         
            +
            - **CI/CD**: Set up GitHub Actions for automated testing and deployment
         
     | 
| 287 | 
         
            +
            - **Model Monitoring**: Implement monitoring for data drift and performance degradation
         
     | 
| 288 | 
         
            +
            - **Continuous Training**: Define triggers for automated retraining
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
            ### Model Improvements
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
            - **Feature Engineering**: Add more complex features (historical averages, time of day, etc.)
         
     | 
| 293 | 
         
            +
            - **Advanced Models**: Experiment with Random Forest, Gradient Boosting, etc.
         
     | 
| 294 | 
         
            +
            - **Hyperparameter Tuning**: Implement automated hyperparameter optimization
         
     | 
| 295 | 
         
            +
            - **Ensemble Methods**: Combine multiple models for better predictions
         
     | 
| 296 | 
         | 
| 297 | 
         
             
            ## 🤝 Contributing
         
     | 
| 298 | 
         | 
| 
         | 
|
| 300 | 
         
             
            2. Create a feature branch
         
     | 
| 301 | 
         
             
            3. Make your changes
         
     | 
| 302 | 
         
             
            4. Add tests for new functionality
         
     | 
| 303 | 
         
            +
            5. Ensure all tests pass
         
     | 
| 304 | 
         
            +
            6. Submit a pull request
         
     | 
| 305 | 
         | 
| 306 | 
         
            +
            ## 📄 License
         
     | 
| 307 | 
         | 
| 308 | 
         
            +
            This project is licensed under the MIT License - see the LICENSE file for details.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 309 | 
         | 
| 310 | 
         
            +
            ## 🙏 Acknowledgments
         
     | 
| 311 | 
         | 
| 312 | 
         
            +
            - Gradio team for the excellent web interface framework
         
     | 
| 313 | 
         
            +
            - Scikit-learn team for the machine learning library
         
     | 
| 314 | 
         
            +
            - The MLOps community for best practices and guidance
         
     |