Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import torch.nn as nn | |
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from typing import Dict | |
import functools | |
import inspect | |
from types import SimpleNamespace | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
import rasterio | |
from pathlib import Path | |
from torchvision.transforms import ToPILImage | |
from base64 import b64encode | |
import gc | |
from datasets import load_dataset | |
import torchvision | |
import torch.nn.functional as F | |
from IPython.display import HTML | |
from matplotlib import pyplot as plt | |
from pathlib import Path | |
from torch import autocast | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
import os | |
import csv | |
from torchvision.utils import save_image | |
import torch | |
import cv2 | |
from PIL import Image | |
import os | |
from django.conf import settings | |
import torch.nn.functional as F | |
import os | |
import torch | |
from transformers import AutoImageProcessor, SwinModel | |
from diffusers import UNet2DConditionModel | |
def load_models(): | |
torch_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
image_processor_model_path = 'models/image_processor/image_processor' | |
swin_transformer_model_path = 'models/swin_transformer/swin_transformer' | |
vae_model_path = 'models/vae/vae/MonoChannelVAE.pth' | |
unet_model_path = 'models/unet/unet' | |
image_processor = AutoImageProcessor.from_pretrained(image_processor_model_path) | |
swin_transformer = SwinModel.from_pretrained(swin_transformer_model_path) | |
vae = Autoencoder() | |
vae.load_state_dict(torch.load(vae_model_path, map_location=torch.device('cpu'))) | |
unet = UNet2DConditionModel.from_pretrained(unet_model_path) | |
scheduler = DDIMScheduler(beta_start=0.0001, beta_end=0.02, beta_schedule='linear', | |
num_train_timesteps=1000) | |
vae = vae.to(torch_device) | |
swin_transformer = swin_transformer.to(torch_device) | |
unet = unet.to(torch_device) | |
return image_processor, swin_transformer, vae, unet, scheduler | |
def tensor_to_latent(input_im,vae): | |
with torch.no_grad(): | |
latent = vae.encoder(input_im) | |
return latent | |
def latent_to_tensor(input_im,vae): | |
with torch.no_grad(): | |
images = vae.decoder(input_im) | |
return images | |
def upscale_resolution(image): | |
sr = cv2.dnn_superres.DnnSuperResImpl_create() | |
path = os.path.join(settings.BASE_DIR, 'depthAPI', 'models', 'FSRCNN','FSRCNN_x2.pb') | |
sr.readModel(path) | |
sr.setModel("fsrcnn",2) | |
result = sr.upsample(image) | |
resized = cv2.resize(image,dsize=None,fx=2,fy=2) | |
img = Image.fromarray(resized.astype('uint8')) | |
return img | |
def extract_features(image,torch_device,swin_transformer): | |
image.to(torch_device) | |
with torch.no_grad(): | |
swin_output = swin_transformer(**image) | |
del image | |
image_fea = swin_output.last_hidden_state.squeeze(0) | |
return image_fea | |
def rescale(image): | |
max_val = torch.max(image) | |
min_val = torch.min(image) | |
image = (((image - min_val) / (max_val - min_val)) * 2) - 1 | |
return image | |
def normalize(x): | |
return 2 * (x - x.min()) / (x.max() - x.min()) - 1 | |
def upscale_tensor(image): | |
output = F.interpolate(image.unsqueeze(0), size=(512, 512), mode='bilinear', align_corners=False) | |
return output.squeeze(0) | |
class UAHiRISEDataset(Dataset): | |
def __init__(self, root, stage, transform=None): | |
self.root = Path(root) | |
self.stage = stage | |
self.transform = transform | |
self.filenames = self._read_split() | |
def __len__(self): | |
return len(self.filenames) | |
def __getitem__(self, idx): | |
filename = self.filenames[idx] | |
raster_path = self.root / filename | |
raster = rasterio.open(raster_path) | |
left = raster.read(1).astype('uint8') | |
dtm = raster.read(2) | |
# converting absolute heigths to relative depths | |
dtm = abs(dtm - dtm.min()) | |
to_pil = ToPILImage() | |
to_transform = {"image": to_pil(left).convert('RGB'), "dtm": dtm} | |
return self.transform(to_transform) | |
# return to_transform | |
def _add_channels(self, image): | |
img_expanded = np.stack([image, image, image], axis=-1) | |
img_tensor = torch.from_numpy(img_expanded).permute(2, 0, 1) | |
return img_tensor | |
def set_transform(self, transform): | |
self.transform = transform | |
def _read_split(self): | |
split_filename = f'uahirise_{self.stage}.txt' | |
split_filepath = Path(f'filenames/{split_filename}') | |
filenames = split_filepath.read_text().splitlines() | |
return filenames | |
class Autoencoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# N, 1 512,512 | |
self.encoder = nn.Sequential( | |
# nn.Conv2d(input_channel,16,3,stride=2, padding=1), | |
nn.Conv2d(1,2,3,stride=2, padding=1), # N, 2, 256, 256 | |
nn.ReLU(), | |
nn.Conv2d(2,3,3,stride=2, padding=1), # N, 3, 128, 128 | |
nn.ReLU(), | |
nn.Conv2d(3,4,3,stride=2, padding=1), # N, 4, 64, 64 | |
) | |
self.decoder = nn.Sequential( | |
nn.ConvTranspose2d(4,3,3,stride=2, padding=1, output_padding=1), | |
nn.ReLU(), | |
nn.ConvTranspose2d(3,2,3,stride=2, padding=1,output_padding=1), | |
nn.ReLU(), | |
nn.ConvTranspose2d(2,1,3,stride=2, padding=1,output_padding=1), | |
nn.Tanh() | |
) | |
def forward(self,x): | |
encoded = self.encoder(x) | |
decoded = self.decoder(encoded) | |
return decoded | |
def register_to_config(init): | |
r""" | |
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are | |
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that | |
shouldn't be registered in the config, use the `ignore_for_config` class variable | |
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init! | |
""" | |
def inner_init(self, *args, **kwargs): | |
# Ignore private kwargs in the init. | |
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")} | |
config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")} | |
ignore = getattr(self, "ignore_for_config", []) | |
# Get positional arguments aligned with kwargs | |
new_kwargs = {} | |
signature = inspect.signature(init) | |
parameters = { | |
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore | |
} | |
for arg, name in zip(args, parameters.keys()): | |
new_kwargs[name] = arg | |
# Then add all kwargs | |
new_kwargs.update( | |
{ | |
k: init_kwargs.get(k, default) | |
for k, default in parameters.items() | |
if k not in ignore and k not in new_kwargs | |
} | |
) | |
new_kwargs = {**config_init_kwargs, **new_kwargs} | |
getattr(self, "register_to_config")(**new_kwargs) | |
init(self, *args, **init_kwargs) | |
return inner_init | |
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
(1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps (`int`): the number of betas to produce. | |
max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
Returns: | |
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
""" | |
def alpha_bar(time_step): | |
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return torch.tensor(betas) | |
class DDIMScheduler(): | |
config_name = "scheduler_config.json" | |
_deprecated_kwargs = ["predict_epsilon"] | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
clip_sample: bool = False, | |
set_alpha_to_one: bool = True, | |
steps_offset: int = 0, | |
prediction_type: str = "epsilon", | |
**kwargs, | |
): | |
message = ( | |
"Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler =" | |
" DDIMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`." | |
) | |
predict_epsilon = kwargs.get('predict_epsilon', None) | |
if predict_epsilon is not None: | |
self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample") | |
if trained_betas is not None: | |
self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = ( | |
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
) | |
elif beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
self.betas = betas_for_alpha_bar(num_train_timesteps) | |
else: | |
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
# At every step in ddim, we are looking into the previous alphas_cumprod | |
# For the final step, there is no previous alphas_cumprod because we are already at 0 | |
# `set_alpha_to_one` decides whether we set this parameter simply to one or | |
# whether we use the final alpha of the "non-previous" one. | |
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# setable values | |
self.num_inference_steps = None | |
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) | |
def register_to_config(self, **kwargs): | |
if self.config_name is None: | |
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`") | |
# Special case for `kwargs` used in deprecation warning added to schedulers | |
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument, | |
# or solve in a more general way. | |
kwargs.pop("kwargs", None) | |
for key, value in kwargs.items(): | |
try: | |
setattr(self, key, value) | |
except AttributeError as err: | |
print(f"Can't set {key} with value {value} for {self}") | |
raise err | |
if not hasattr(self, "_internal_dict"): | |
internal_dict = kwargs | |
else: | |
previous_dict = dict(self._internal_dict) | |
internal_dict = {**self._internal_dict, **kwargs} | |
print(f"Updating config from {previous_dict} to {internal_dict}") | |
self._internal_dict = internal_dict | |
def config(self): | |
""" | |
Returns the config of the class as a frozen dictionary | |
Returns: | |
`Dict[str, Any]`: Config of the class. | |
""" | |
return SimpleNamespace(**self._internal_dict) | |
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.FloatTensor`): input sample | |
timestep (`int`, optional): current timestep | |
Returns: | |
`torch.FloatTensor`: scaled input sample | |
""" | |
return sample | |
def _get_variance(self, timestep, prev_timestep): | |
alpha_prod_t = self.alphas_cumprod[timestep] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
beta_prod_t_prev = 1 - alpha_prod_t_prev | |
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) | |
return variance | |
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
""" | |
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
""" | |
self.num_inference_steps = num_inference_steps | |
step_ratio = self.config.num_train_timesteps // self.num_inference_steps | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) | |
self.timesteps = torch.from_numpy(timesteps).to(device) | |
self.timesteps += self.config.steps_offset | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
sample: torch.FloatTensor, | |
eta: float = 0.0, | |
use_clipped_model_output: bool = False, | |
generator=None, | |
variance_noise: Optional[torch.FloatTensor] = None, | |
return_dict: bool = True, | |
) -> Union[Dict, Tuple]: | |
""" | |
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
current instance of sample being created by diffusion process. | |
eta (`float`): weight of noise for added noise in diffusion step. | |
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped | |
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when | |
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would | |
coincide with the one provided as input and `use_clipped_model_output` will have not effect. | |
generator: random number generator. | |
variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we | |
can directly provide the noise for the variance itself. This is useful for methods such as | |
CycleDiffusion. (https://arxiv.org/abs/2210.05559) | |
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class | |
Returns: | |
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: | |
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf | |
# Ideally, read DDIM paper in-detail understanding | |
# Notation (<variable name> -> <name in paper> | |
# - pred_noise_t -> e_theta(x_t, t) | |
# - pred_original_sample -> f_theta(x_t, t) or x_0 | |
# - std_dev_t -> sigma_t | |
# - eta -> η | |
# - pred_sample_direction -> "direction pointing to x_t" | |
# - pred_prev_sample -> "x_t-1" | |
# 1. get previous step value (=t-1) | |
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps | |
# 2. compute alphas, betas | |
alpha_prod_t = self.alphas_cumprod[timestep] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
# 3. compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
if self.config.prediction_type == "epsilon": | |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
elif self.config.prediction_type == "sample": | |
pred_original_sample = model_output | |
elif self.config.prediction_type == "v_prediction": | |
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
# predict V | |
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
" `v_prediction`" | |
) | |
# 4. Clip "predicted x_0" | |
if self.config.clip_sample: | |
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) | |
# 5. compute variance: "sigma_t(η)" -> see formula (16) | |
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) | |
variance = self._get_variance(timestep, prev_timestep) | |
std_dev_t = eta * variance ** (0.5) | |
if use_clipped_model_output: | |
# the model_output is always re-derived from the clipped x_0 in Glide | |
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output | |
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
if eta > 0: | |
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 | |
device = model_output.device | |
if variance_noise is not None and generator is not None: | |
raise ValueError( | |
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or" | |
" `variance_noise` stays `None`." | |
) | |
if variance_noise is None: | |
if device.type == "mps": | |
# randn does not work reproducibly on mps | |
variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator) | |
variance_noise = variance_noise.to(device) | |
else: | |
variance_noise = torch.randn( | |
model_output.shape, generator=generator, device=device, dtype=model_output.dtype | |
) | |
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise | |
prev_sample = prev_sample + variance | |
if not return_dict: | |
return (prev_sample,) | |
return dict(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.IntTensor, | |
) -> torch.FloatTensor: | |
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | |
timesteps = timesteps.to(original_samples.device) | |
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
return noisy_samples | |
def get_velocity( | |
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor | |
) -> torch.FloatTensor: | |
# Make sure alphas_cumprod and timestep have same device and dtype as sample | |
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype) | |
timesteps = timesteps.to(sample.device) | |
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(sample.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample | |
return velocity | |
def __len__(self): | |
return self.config.num_train_timesteps | |
image_processor, swin_transformer, vae, unet, scheduler = load_models() | |
def MonoGeoDepthModelRun(numpy_image): | |
numpy_image = numpy_image.astype(np.uint8) | |
image = Image.fromarray(numpy_image) | |
batch_size=1 | |
torch_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
image = image.convert("RGB") | |
extracted_image = image_processor(image, return_tensors="pt") | |
image_embeddings = extract_features(extracted_image, torch_device, swin_transformer) | |
image_embeddings = image_embeddings.unsqueeze(0) | |
torch.manual_seed(0) | |
random_noise = normalize(torch.randn(1, 1, 512, 512).to(torch_device)) | |
image_embeddings = image_embeddings.to(torch_device) | |
with torch.no_grad(): | |
noisy_latents = tensor_to_latent(random_noise, vae) | |
del random_noise | |
t = torch.tensor(1000) | |
model_input = scheduler.scale_model_input(noisy_latents, t) | |
noise_pred = unet(model_input, t, encoder_hidden_states=image_embeddings, return_dict=False) | |
noisy_latents = model_input - noise_pred[0] | |
predicted_dtm = latent_to_tensor(noisy_latents, vae) | |
predicted_dtm = predicted_dtm.detach().cpu() | |
image_ = predicted_dtm.squeeze(0) | |
image_ = (image_ - image_.min()) / (image_.max() - image_.min()) | |
to_pil = ToPILImage() | |
predicted_dtm = to_pil(image_) | |
return predicted_dtm | |
def model(img): | |
img_array = np.array(img) | |
return img_array | |
iface = gr.Interface( | |
fn=MonoGeoDepthModelRun, | |
inputs="image", | |
outputs="image" | |
) | |
iface.launch() |