Upload 2 files
Browse files- app.py +52 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from roboflow import Roboflow
|
| 3 |
+
import tempfile
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Inisialisasi Roboflow
|
| 7 |
+
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
|
| 8 |
+
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
| 9 |
+
model = project.version(8).model
|
| 10 |
+
|
| 11 |
+
# Fungsi untuk menangani input dan output gambar
|
| 12 |
+
def detect_objects(image):
|
| 13 |
+
# Menyimpan gambar yang diupload sebagai file sementara
|
| 14 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
| 15 |
+
image.save(temp_file, format="JPEG")
|
| 16 |
+
temp_file_path = temp_file.name
|
| 17 |
+
|
| 18 |
+
# Lakukan prediksi pada gambar
|
| 19 |
+
predictions = model.predict(temp_file_path, confidence=80, overlap=60).json()
|
| 20 |
+
|
| 21 |
+
# Menghitung jumlah objek per kelas
|
| 22 |
+
class_count = {}
|
| 23 |
+
for prediction in predictions['predictions']:
|
| 24 |
+
class_name = prediction['class']
|
| 25 |
+
if class_name in class_count:
|
| 26 |
+
class_count[class_name] += 1
|
| 27 |
+
else:
|
| 28 |
+
class_count[class_name] = 1
|
| 29 |
+
|
| 30 |
+
# Menyusun output berupa string hasil perhitungan
|
| 31 |
+
result_text = "Jumlah objek per kelas:\n"
|
| 32 |
+
for class_name, count in class_count.items():
|
| 33 |
+
result_text += f"{class_name}: {count} objek\n"
|
| 34 |
+
|
| 35 |
+
# Menyimpan gambar dengan prediksi
|
| 36 |
+
output_image = model.predict(temp_file_path, confidence=40, overlap=30).save("/tmp/prediction.jpg")
|
| 37 |
+
|
| 38 |
+
# Hapus file sementara setelah prediksi
|
| 39 |
+
os.remove(temp_file_path)
|
| 40 |
+
|
| 41 |
+
return "/tmp/prediction.jpg", result_text
|
| 42 |
+
|
| 43 |
+
# Membuat antarmuka Gradio
|
| 44 |
+
iface = gr.Interface(
|
| 45 |
+
fn=detect_objects, # Fungsi yang dipanggil saat gambar diupload
|
| 46 |
+
inputs=gr.Image(type="pil"), # Input berupa gambar
|
| 47 |
+
outputs=[gr.Image(), gr.Textbox()], # Output gambar dan teks
|
| 48 |
+
live=True # Menampilkan hasil secara langsung
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Menjalankan antarmuka
|
| 52 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
roboflow
|
| 3 |
+
#opencv-python
|
| 4 |
+
#numpy
|