Update app.py
Browse files
app.py
CHANGED
|
@@ -1,52 +1,149 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from roboflow import Roboflow
|
|
|
|
|
|
|
| 3 |
import tempfile
|
| 4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
rf = Roboflow(api_key=
|
| 8 |
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
| 9 |
model = project.version(16).model
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
iface.launch()
|
|
|
|
| 1 |
+
import logging
|
| 2 |
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
from roboflow import Roboflow
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
from openai import OpenAI
|
| 7 |
import tempfile
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image, ImageDraw
|
| 10 |
+
import base64
|
| 11 |
+
|
| 12 |
+
# Load environment variables
|
| 13 |
+
load_dotenv()
|
| 14 |
+
|
| 15 |
+
# Configure logging
|
| 16 |
+
logging.basicConfig(
|
| 17 |
+
level=logging.INFO,
|
| 18 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 19 |
+
)
|
| 20 |
+
logger = logging.getLogger(__name__)
|
| 21 |
+
|
| 22 |
+
# Initialize API Keys
|
| 23 |
+
roboflow_key = os.getenv("ROBOFLOW_API_KEY")
|
| 24 |
+
if not roboflow_key:
|
| 25 |
+
raise ValueError("ROBOFLOW_API_KEY is missing. Please add it to the .env file.")
|
| 26 |
+
|
| 27 |
+
openai_key = os.getenv("OPENAI_API_KEY")
|
| 28 |
+
if not openai_key:
|
| 29 |
+
raise ValueError("OPENAI_API_KEY is missing. Please add it to the .env file.")
|
| 30 |
|
| 31 |
+
# Initialize Roboflow and OpenAI clients
|
| 32 |
+
rf = Roboflow(api_key=roboflow_key)
|
| 33 |
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
| 34 |
model = project.version(16).model
|
| 35 |
|
| 36 |
+
client_openai = OpenAI(api_key=openai_key)
|
| 37 |
+
|
| 38 |
+
# Function to detect objects and estimate occluded objects
|
| 39 |
+
def detect_and_estimate_objects(image):
|
| 40 |
+
try:
|
| 41 |
+
# Save image to temporary file
|
| 42 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
| 43 |
+
image.save(temp_file, format="JPEG")
|
| 44 |
+
temp_file_path = temp_file.name
|
| 45 |
+
|
| 46 |
+
logger.info("Image saved successfully for processing.")
|
| 47 |
+
|
| 48 |
+
# Step 1: YOLO detection
|
| 49 |
+
predictions = model.predict(temp_file_path, confidence=50, overlap=80).json()
|
| 50 |
+
class_count = {}
|
| 51 |
+
object_positions = []
|
| 52 |
+
|
| 53 |
+
for prediction in predictions['predictions']:
|
| 54 |
+
class_name = prediction['class']
|
| 55 |
+
bbox = prediction['x'], prediction['y'], prediction['width'], prediction['height']
|
| 56 |
+
object_positions.append(bbox)
|
| 57 |
+
class_count[class_name] = class_count.get(class_name, 0) + 1
|
| 58 |
+
|
| 59 |
+
logger.info(f"YOLO detected objects: {class_count}")
|
| 60 |
+
|
| 61 |
+
# Step 2: Create a grid and map detected objects
|
| 62 |
+
grid_size = 5
|
| 63 |
+
image_width, image_height = image.size
|
| 64 |
+
grid = np.zeros((grid_size, grid_size))
|
| 65 |
+
|
| 66 |
+
for x, y, w, h in object_positions:
|
| 67 |
+
grid_x = min(max(int(x / image_width * grid_size), 0), grid_size - 1)
|
| 68 |
+
grid_y = min(max(int(y / image_height * grid_size), 0), grid_size - 1)
|
| 69 |
+
grid[grid_y, grid_x] += 1
|
| 70 |
+
|
| 71 |
+
logger.info(f"Grid occupancy calculated: {grid.tolist()}")
|
| 72 |
+
|
| 73 |
+
# Step 3: Use GPT-4 to estimate occluded objects
|
| 74 |
+
|
| 75 |
+
# Encode image to Base64
|
| 76 |
+
with open(temp_file_path, "rb") as image_file:
|
| 77 |
+
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
| 78 |
+
print(base64_image)
|
| 79 |
+
logger.info(f"Base64 encoding successful. Length: {len(base64_image)}")
|
| 80 |
+
|
| 81 |
+
# prompt = f"""
|
| 82 |
+
# Here is an image encoded in Base64 format: {base64_image} Please analyze this image and estimate the number of occluded objects for each class.
|
| 83 |
+
# """
|
| 84 |
+
|
| 85 |
+
response = client_openai.chat.completions.create(
|
| 86 |
+
model="gpt-4o",
|
| 87 |
+
messages=[
|
| 88 |
+
{
|
| 89 |
+
"role": "user",
|
| 90 |
+
"content": [
|
| 91 |
+
{
|
| 92 |
+
"type": "text",
|
| 93 |
+
"text": "What is in this image?",
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"type": "image_url",
|
| 97 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
| 98 |
+
},
|
| 99 |
+
],
|
| 100 |
+
}
|
| 101 |
+
],
|
| 102 |
)
|
| 103 |
+
gpt_estimation = response.choices[0].message.content.strip()
|
| 104 |
+
print(response.choices[0].message.content)
|
| 105 |
+
|
| 106 |
+
logger.info(f"GPT-4 estimation: {gpt_estimation}")
|
| 107 |
+
|
| 108 |
+
# Step 4: Combine YOLO and GPT results
|
| 109 |
+
result_text = "YOLO Detection Results:\n"
|
| 110 |
+
for class_name, count in class_count.items():
|
| 111 |
+
result_text += f"{class_name}: {count} objects\n"
|
| 112 |
+
result_text += f"\nGPT Estimation for Occluded Objects:\n{gpt_estimation}"
|
| 113 |
+
|
| 114 |
+
# Step 5: Visualize grid on the image
|
| 115 |
+
draw = ImageDraw.Draw(image)
|
| 116 |
+
for i in range(1, grid_size):
|
| 117 |
+
draw.line([(i * image_width // grid_size, 0), (i * image_width // grid_size, image_height)], fill="red", width=2)
|
| 118 |
+
draw.line([(0, i * image_height // grid_size), (image_width, i * image_height // grid_size)], fill="red", width=2)
|
| 119 |
+
|
| 120 |
+
output_path = "/tmp/prediction_grid.jpg"
|
| 121 |
+
image.save(output_path)
|
| 122 |
+
|
| 123 |
+
logger.info("Processed image saved successfully.")
|
| 124 |
+
|
| 125 |
+
# Cleanup
|
| 126 |
+
os.remove(temp_file_path)
|
| 127 |
+
|
| 128 |
+
return output_path, result_text
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
logger.error(f"Error during processing: {e}")
|
| 132 |
+
return None, f"Error: {e}"
|
| 133 |
+
|
| 134 |
+
# Create Gradio interface
|
| 135 |
+
with gr.Blocks() as iface:
|
| 136 |
+
gr.Markdown("### Object Detection and Counting with GPT-4 Assistance")
|
| 137 |
+
with gr.Row():
|
| 138 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
| 139 |
+
output_image = gr.Image(label="Processed Image with Grid")
|
| 140 |
+
output_text = gr.Textbox(label="Results", interactive=False)
|
| 141 |
+
|
| 142 |
+
detect_button = gr.Button("Process Image")
|
| 143 |
+
detect_button.click(
|
| 144 |
+
fn=detect_and_estimate_objects,
|
| 145 |
+
inputs=[input_image],
|
| 146 |
+
outputs=[output_image, output_text]
|
| 147 |
+
)
|
| 148 |
|
| 149 |
+
iface.launch(debug=True)
|
|
|