Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,149 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from roboflow import Roboflow
|
|
|
|
|
3 |
import tempfile
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
rf = Roboflow(api_key=
|
8 |
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
9 |
model = project.version(16).model
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
iface.launch()
|
|
|
1 |
+
import logging
|
2 |
import gradio as gr
|
3 |
+
import os
|
4 |
from roboflow import Roboflow
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from openai import OpenAI
|
7 |
import tempfile
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image, ImageDraw
|
10 |
+
import base64
|
11 |
+
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Configure logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
19 |
+
)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
# Initialize API Keys
|
23 |
+
roboflow_key = os.getenv("ROBOFLOW_API_KEY")
|
24 |
+
if not roboflow_key:
|
25 |
+
raise ValueError("ROBOFLOW_API_KEY is missing. Please add it to the .env file.")
|
26 |
+
|
27 |
+
openai_key = os.getenv("OPENAI_API_KEY")
|
28 |
+
if not openai_key:
|
29 |
+
raise ValueError("OPENAI_API_KEY is missing. Please add it to the .env file.")
|
30 |
|
31 |
+
# Initialize Roboflow and OpenAI clients
|
32 |
+
rf = Roboflow(api_key=roboflow_key)
|
33 |
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
34 |
model = project.version(16).model
|
35 |
|
36 |
+
client_openai = OpenAI(api_key=openai_key)
|
37 |
+
|
38 |
+
# Function to detect objects and estimate occluded objects
|
39 |
+
def detect_and_estimate_objects(image):
|
40 |
+
try:
|
41 |
+
# Save image to temporary file
|
42 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
43 |
+
image.save(temp_file, format="JPEG")
|
44 |
+
temp_file_path = temp_file.name
|
45 |
+
|
46 |
+
logger.info("Image saved successfully for processing.")
|
47 |
+
|
48 |
+
# Step 1: YOLO detection
|
49 |
+
predictions = model.predict(temp_file_path, confidence=50, overlap=80).json()
|
50 |
+
class_count = {}
|
51 |
+
object_positions = []
|
52 |
+
|
53 |
+
for prediction in predictions['predictions']:
|
54 |
+
class_name = prediction['class']
|
55 |
+
bbox = prediction['x'], prediction['y'], prediction['width'], prediction['height']
|
56 |
+
object_positions.append(bbox)
|
57 |
+
class_count[class_name] = class_count.get(class_name, 0) + 1
|
58 |
+
|
59 |
+
logger.info(f"YOLO detected objects: {class_count}")
|
60 |
+
|
61 |
+
# Step 2: Create a grid and map detected objects
|
62 |
+
grid_size = 5
|
63 |
+
image_width, image_height = image.size
|
64 |
+
grid = np.zeros((grid_size, grid_size))
|
65 |
+
|
66 |
+
for x, y, w, h in object_positions:
|
67 |
+
grid_x = min(max(int(x / image_width * grid_size), 0), grid_size - 1)
|
68 |
+
grid_y = min(max(int(y / image_height * grid_size), 0), grid_size - 1)
|
69 |
+
grid[grid_y, grid_x] += 1
|
70 |
+
|
71 |
+
logger.info(f"Grid occupancy calculated: {grid.tolist()}")
|
72 |
+
|
73 |
+
# Step 3: Use GPT-4 to estimate occluded objects
|
74 |
+
|
75 |
+
# Encode image to Base64
|
76 |
+
with open(temp_file_path, "rb") as image_file:
|
77 |
+
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
78 |
+
print(base64_image)
|
79 |
+
logger.info(f"Base64 encoding successful. Length: {len(base64_image)}")
|
80 |
+
|
81 |
+
# prompt = f"""
|
82 |
+
# Here is an image encoded in Base64 format: {base64_image} Please analyze this image and estimate the number of occluded objects for each class.
|
83 |
+
# """
|
84 |
+
|
85 |
+
response = client_openai.chat.completions.create(
|
86 |
+
model="gpt-4o",
|
87 |
+
messages=[
|
88 |
+
{
|
89 |
+
"role": "user",
|
90 |
+
"content": [
|
91 |
+
{
|
92 |
+
"type": "text",
|
93 |
+
"text": "What is in this image?",
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"type": "image_url",
|
97 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
98 |
+
},
|
99 |
+
],
|
100 |
+
}
|
101 |
+
],
|
102 |
)
|
103 |
+
gpt_estimation = response.choices[0].message.content.strip()
|
104 |
+
print(response.choices[0].message.content)
|
105 |
+
|
106 |
+
logger.info(f"GPT-4 estimation: {gpt_estimation}")
|
107 |
+
|
108 |
+
# Step 4: Combine YOLO and GPT results
|
109 |
+
result_text = "YOLO Detection Results:\n"
|
110 |
+
for class_name, count in class_count.items():
|
111 |
+
result_text += f"{class_name}: {count} objects\n"
|
112 |
+
result_text += f"\nGPT Estimation for Occluded Objects:\n{gpt_estimation}"
|
113 |
+
|
114 |
+
# Step 5: Visualize grid on the image
|
115 |
+
draw = ImageDraw.Draw(image)
|
116 |
+
for i in range(1, grid_size):
|
117 |
+
draw.line([(i * image_width // grid_size, 0), (i * image_width // grid_size, image_height)], fill="red", width=2)
|
118 |
+
draw.line([(0, i * image_height // grid_size), (image_width, i * image_height // grid_size)], fill="red", width=2)
|
119 |
+
|
120 |
+
output_path = "/tmp/prediction_grid.jpg"
|
121 |
+
image.save(output_path)
|
122 |
+
|
123 |
+
logger.info("Processed image saved successfully.")
|
124 |
+
|
125 |
+
# Cleanup
|
126 |
+
os.remove(temp_file_path)
|
127 |
+
|
128 |
+
return output_path, result_text
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
logger.error(f"Error during processing: {e}")
|
132 |
+
return None, f"Error: {e}"
|
133 |
+
|
134 |
+
# Create Gradio interface
|
135 |
+
with gr.Blocks() as iface:
|
136 |
+
gr.Markdown("### Object Detection and Counting with GPT-4 Assistance")
|
137 |
+
with gr.Row():
|
138 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
139 |
+
output_image = gr.Image(label="Processed Image with Grid")
|
140 |
+
output_text = gr.Textbox(label="Results", interactive=False)
|
141 |
+
|
142 |
+
detect_button = gr.Button("Process Image")
|
143 |
+
detect_button.click(
|
144 |
+
fn=detect_and_estimate_objects,
|
145 |
+
inputs=[input_image],
|
146 |
+
outputs=[output_image, output_text]
|
147 |
+
)
|
148 |
|
149 |
+
iface.launch(debug=True)
|
|