|
import os |
|
from PIL import Image, ImageOps |
|
import math |
|
import platform |
|
import sys |
|
import tqdm |
|
import time |
|
|
|
from modules import paths, shared, images, deepbooru |
|
from modules.shared import opts, cmd_opts |
|
from modules.textual_inversion import autocrop |
|
|
|
|
|
def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None): |
|
try: |
|
if process_caption: |
|
shared.interrogator.load() |
|
|
|
if process_caption_deepbooru: |
|
deepbooru.model.start() |
|
|
|
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold) |
|
|
|
finally: |
|
|
|
if process_caption: |
|
shared.interrogator.send_blip_to_ram() |
|
|
|
if process_caption_deepbooru: |
|
deepbooru.model.stop() |
|
|
|
|
|
def listfiles(dirname): |
|
return os.listdir(dirname) |
|
|
|
|
|
class PreprocessParams: |
|
src = None |
|
dstdir = None |
|
subindex = 0 |
|
flip = False |
|
process_caption = False |
|
process_caption_deepbooru = False |
|
preprocess_txt_action = None |
|
|
|
|
|
def save_pic_with_caption(image, index, params: PreprocessParams, existing_caption=None): |
|
caption = "" |
|
|
|
if params.process_caption: |
|
caption += shared.interrogator.generate_caption(image) |
|
|
|
if params.process_caption_deepbooru: |
|
if len(caption) > 0: |
|
caption += ", " |
|
caption += deepbooru.model.tag_multi(image) |
|
|
|
filename_part = params.src |
|
filename_part = os.path.splitext(filename_part)[0] |
|
filename_part = os.path.basename(filename_part) |
|
|
|
basename = f"{index:05}-{params.subindex}-{filename_part}" |
|
image.save(os.path.join(params.dstdir, f"{basename}.png")) |
|
|
|
if params.preprocess_txt_action == 'prepend' and existing_caption: |
|
caption = existing_caption + ' ' + caption |
|
elif params.preprocess_txt_action == 'append' and existing_caption: |
|
caption = caption + ' ' + existing_caption |
|
elif params.preprocess_txt_action == 'copy' and existing_caption: |
|
caption = existing_caption |
|
|
|
caption = caption.strip() |
|
|
|
if len(caption) > 0: |
|
with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file: |
|
file.write(caption) |
|
|
|
params.subindex += 1 |
|
|
|
|
|
def save_pic(image, index, params, existing_caption=None): |
|
save_pic_with_caption(image, index, params, existing_caption=existing_caption) |
|
|
|
if params.flip: |
|
save_pic_with_caption(ImageOps.mirror(image), index, params, existing_caption=existing_caption) |
|
|
|
|
|
def split_pic(image, inverse_xy, width, height, overlap_ratio): |
|
if inverse_xy: |
|
from_w, from_h = image.height, image.width |
|
to_w, to_h = height, width |
|
else: |
|
from_w, from_h = image.width, image.height |
|
to_w, to_h = width, height |
|
h = from_h * to_w // from_w |
|
if inverse_xy: |
|
image = image.resize((h, to_w)) |
|
else: |
|
image = image.resize((to_w, h)) |
|
|
|
split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio))) |
|
y_step = (h - to_h) / (split_count - 1) |
|
for i in range(split_count): |
|
y = int(y_step * i) |
|
if inverse_xy: |
|
splitted = image.crop((y, 0, y + to_h, to_w)) |
|
else: |
|
splitted = image.crop((0, y, to_w, y + to_h)) |
|
yield splitted |
|
|
|
|
|
def center_crop(image: Image, w: int, h: int): |
|
iw, ih = image.size |
|
if ih / h < iw / w: |
|
sw = w * ih / h |
|
box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih |
|
else: |
|
sh = h * iw / w |
|
box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2 |
|
return image.resize((w, h), Image.Resampling.LANCZOS, box) |
|
|
|
|
|
def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold): |
|
iw, ih = image.size |
|
err = lambda w, h: 1-(lambda x: x if x < 1 else 1/x)(iw/ih/(w/h)) |
|
wh = max(((w, h) for w in range(mindim, maxdim+1, 64) for h in range(mindim, maxdim+1, 64) |
|
if minarea <= w * h <= maxarea and err(w, h) <= threshold), |
|
key= lambda wh: (wh[0]*wh[1], -err(*wh))[::1 if objective=='Maximize area' else -1], |
|
default=None |
|
) |
|
return wh and center_crop(image, *wh) |
|
|
|
|
|
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None): |
|
width = process_width |
|
height = process_height |
|
src = os.path.abspath(process_src) |
|
dst = os.path.abspath(process_dst) |
|
split_threshold = max(0.0, min(1.0, split_threshold)) |
|
overlap_ratio = max(0.0, min(0.9, overlap_ratio)) |
|
|
|
assert src != dst, 'same directory specified as source and destination' |
|
|
|
os.makedirs(dst, exist_ok=True) |
|
|
|
files = listfiles(src) |
|
|
|
shared.state.job = "preprocess" |
|
shared.state.textinfo = "Preprocessing..." |
|
shared.state.job_count = len(files) |
|
|
|
params = PreprocessParams() |
|
params.dstdir = dst |
|
params.flip = process_flip |
|
params.process_caption = process_caption |
|
params.process_caption_deepbooru = process_caption_deepbooru |
|
params.preprocess_txt_action = preprocess_txt_action |
|
|
|
pbar = tqdm.tqdm(files) |
|
for index, imagefile in enumerate(pbar): |
|
params.subindex = 0 |
|
filename = os.path.join(src, imagefile) |
|
try: |
|
img = Image.open(filename).convert("RGB") |
|
except Exception: |
|
continue |
|
|
|
description = f"Preprocessing [Image {index}/{len(files)}]" |
|
pbar.set_description(description) |
|
shared.state.textinfo = description |
|
|
|
params.src = filename |
|
|
|
existing_caption = None |
|
existing_caption_filename = os.path.splitext(filename)[0] + '.txt' |
|
if os.path.exists(existing_caption_filename): |
|
with open(existing_caption_filename, 'r', encoding="utf8") as file: |
|
existing_caption = file.read() |
|
|
|
if shared.state.interrupted: |
|
break |
|
|
|
if img.height > img.width: |
|
ratio = (img.width * height) / (img.height * width) |
|
inverse_xy = False |
|
else: |
|
ratio = (img.height * width) / (img.width * height) |
|
inverse_xy = True |
|
|
|
process_default_resize = True |
|
|
|
if process_split and ratio < 1.0 and ratio <= split_threshold: |
|
for splitted in split_pic(img, inverse_xy, width, height, overlap_ratio): |
|
save_pic(splitted, index, params, existing_caption=existing_caption) |
|
process_default_resize = False |
|
|
|
if process_focal_crop and img.height != img.width: |
|
|
|
dnn_model_path = None |
|
try: |
|
dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv")) |
|
except Exception as e: |
|
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e) |
|
|
|
autocrop_settings = autocrop.Settings( |
|
crop_width = width, |
|
crop_height = height, |
|
face_points_weight = process_focal_crop_face_weight, |
|
entropy_points_weight = process_focal_crop_entropy_weight, |
|
corner_points_weight = process_focal_crop_edges_weight, |
|
annotate_image = process_focal_crop_debug, |
|
dnn_model_path = dnn_model_path, |
|
) |
|
for focal in autocrop.crop_image(img, autocrop_settings): |
|
save_pic(focal, index, params, existing_caption=existing_caption) |
|
process_default_resize = False |
|
|
|
if process_multicrop: |
|
cropped = multicrop_pic(img, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold) |
|
if cropped is not None: |
|
save_pic(cropped, index, params, existing_caption=existing_caption) |
|
else: |
|
print(f"skipped {img.width}x{img.height} image {filename} (can't find suitable size within error threshold)") |
|
process_default_resize = False |
|
|
|
if process_default_resize: |
|
img = images.resize_image(1, img, width, height) |
|
save_pic(img, index, params, existing_caption=existing_caption) |
|
|
|
shared.state.nextjob() |
|
|