|
import math |
|
|
|
import modules.scripts as scripts |
|
import gradio as gr |
|
from PIL import Image, ImageDraw |
|
|
|
from modules import images, processing, devices |
|
from modules.processing import Processed, process_images |
|
from modules.shared import opts, cmd_opts, state |
|
|
|
|
|
class Script(scripts.Script): |
|
def title(self): |
|
return "Poor man's outpainting" |
|
|
|
def show(self, is_img2img): |
|
return is_img2img |
|
|
|
def ui(self, is_img2img): |
|
if not is_img2img: |
|
return None |
|
|
|
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels")) |
|
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur")) |
|
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill")) |
|
direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction")) |
|
|
|
return [pixels, mask_blur, inpainting_fill, direction] |
|
|
|
def run(self, p, pixels, mask_blur, inpainting_fill, direction): |
|
initial_seed = None |
|
initial_info = None |
|
|
|
p.mask_blur = mask_blur * 2 |
|
p.inpainting_fill = inpainting_fill |
|
p.inpaint_full_res = False |
|
|
|
left = pixels if "left" in direction else 0 |
|
right = pixels if "right" in direction else 0 |
|
up = pixels if "up" in direction else 0 |
|
down = pixels if "down" in direction else 0 |
|
|
|
init_img = p.init_images[0] |
|
target_w = math.ceil((init_img.width + left + right) / 64) * 64 |
|
target_h = math.ceil((init_img.height + up + down) / 64) * 64 |
|
|
|
if left > 0: |
|
left = left * (target_w - init_img.width) // (left + right) |
|
if right > 0: |
|
right = target_w - init_img.width - left |
|
|
|
if up > 0: |
|
up = up * (target_h - init_img.height) // (up + down) |
|
|
|
if down > 0: |
|
down = target_h - init_img.height - up |
|
|
|
img = Image.new("RGB", (target_w, target_h)) |
|
img.paste(init_img, (left, up)) |
|
|
|
mask = Image.new("L", (img.width, img.height), "white") |
|
draw = ImageDraw.Draw(mask) |
|
draw.rectangle(( |
|
left + (mask_blur * 2 if left > 0 else 0), |
|
up + (mask_blur * 2 if up > 0 else 0), |
|
mask.width - right - (mask_blur * 2 if right > 0 else 0), |
|
mask.height - down - (mask_blur * 2 if down > 0 else 0) |
|
), fill="black") |
|
|
|
latent_mask = Image.new("L", (img.width, img.height), "white") |
|
latent_draw = ImageDraw.Draw(latent_mask) |
|
latent_draw.rectangle(( |
|
left + (mask_blur//2 if left > 0 else 0), |
|
up + (mask_blur//2 if up > 0 else 0), |
|
mask.width - right - (mask_blur//2 if right > 0 else 0), |
|
mask.height - down - (mask_blur//2 if down > 0 else 0) |
|
), fill="black") |
|
|
|
devices.torch_gc() |
|
|
|
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=pixels) |
|
grid_mask = images.split_grid(mask, tile_w=p.width, tile_h=p.height, overlap=pixels) |
|
grid_latent_mask = images.split_grid(latent_mask, tile_w=p.width, tile_h=p.height, overlap=pixels) |
|
|
|
p.n_iter = 1 |
|
p.batch_size = 1 |
|
p.do_not_save_grid = True |
|
p.do_not_save_samples = True |
|
|
|
work = [] |
|
work_mask = [] |
|
work_latent_mask = [] |
|
work_results = [] |
|
|
|
for (y, h, row), (_, _, row_mask), (_, _, row_latent_mask) in zip(grid.tiles, grid_mask.tiles, grid_latent_mask.tiles): |
|
for tiledata, tiledata_mask, tiledata_latent_mask in zip(row, row_mask, row_latent_mask): |
|
x, w = tiledata[0:2] |
|
|
|
if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down: |
|
continue |
|
|
|
work.append(tiledata[2]) |
|
work_mask.append(tiledata_mask[2]) |
|
work_latent_mask.append(tiledata_latent_mask[2]) |
|
|
|
batch_count = len(work) |
|
print(f"Poor man's outpainting will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)}.") |
|
|
|
state.job_count = batch_count |
|
|
|
for i in range(batch_count): |
|
p.init_images = [work[i]] |
|
p.image_mask = work_mask[i] |
|
p.latent_mask = work_latent_mask[i] |
|
|
|
state.job = f"Batch {i + 1} out of {batch_count}" |
|
processed = process_images(p) |
|
|
|
if initial_seed is None: |
|
initial_seed = processed.seed |
|
initial_info = processed.info |
|
|
|
p.seed = processed.seed + 1 |
|
work_results += processed.images |
|
|
|
|
|
image_index = 0 |
|
for y, h, row in grid.tiles: |
|
for tiledata in row: |
|
x, w = tiledata[0:2] |
|
|
|
if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down: |
|
continue |
|
|
|
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) |
|
image_index += 1 |
|
|
|
combined_image = images.combine_grid(grid) |
|
|
|
if opts.samples_save: |
|
images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.grid_format, info=initial_info, p=p) |
|
|
|
processed = Processed(p, [combined_image], initial_seed, initial_info) |
|
|
|
return processed |
|
|
|
|