|
import os |
|
import torch |
|
|
|
from einops import repeat |
|
from omegaconf import ListConfig |
|
|
|
import ldm.models.diffusion.ddpm |
|
import ldm.models.diffusion.ddim |
|
import ldm.models.diffusion.plms |
|
|
|
from ldm.models.diffusion.ddpm import LatentDiffusion |
|
from ldm.models.diffusion.plms import PLMSSampler |
|
from ldm.models.diffusion.ddim import DDIMSampler, noise_like |
|
from ldm.models.diffusion.sampling_util import norm_thresholding |
|
|
|
|
|
@torch.no_grad() |
|
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, |
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, |
|
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None): |
|
b, *_, device = *x.shape, x.device |
|
|
|
def get_model_output(x, t): |
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: |
|
e_t = self.model.apply_model(x, t, c) |
|
else: |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t] * 2) |
|
|
|
if isinstance(c, dict): |
|
assert isinstance(unconditional_conditioning, dict) |
|
c_in = dict() |
|
for k in c: |
|
if isinstance(c[k], list): |
|
c_in[k] = [ |
|
torch.cat([unconditional_conditioning[k][i], c[k][i]]) |
|
for i in range(len(c[k])) |
|
] |
|
else: |
|
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]]) |
|
else: |
|
c_in = torch.cat([unconditional_conditioning, c]) |
|
|
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) |
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) |
|
|
|
if score_corrector is not None: |
|
assert self.model.parameterization == "eps" |
|
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) |
|
|
|
return e_t |
|
|
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas |
|
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev |
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas |
|
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas |
|
|
|
def get_x_prev_and_pred_x0(e_t, index): |
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) |
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) |
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) |
|
|
|
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
if quantize_denoised: |
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) |
|
if dynamic_threshold is not None: |
|
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) |
|
|
|
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t |
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise |
|
return x_prev, pred_x0 |
|
|
|
e_t = get_model_output(x, t) |
|
if len(old_eps) == 0: |
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) |
|
e_t_next = get_model_output(x_prev, t_next) |
|
e_t_prime = (e_t + e_t_next) / 2 |
|
elif len(old_eps) == 1: |
|
|
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2 |
|
elif len(old_eps) == 2: |
|
|
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 |
|
elif len(old_eps) >= 3: |
|
|
|
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 |
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) |
|
|
|
return x_prev, pred_x0, e_t |
|
|
|
|
|
def do_inpainting_hijack(): |
|
|
|
|
|
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms |
|
|