|
import math |
|
|
|
import modules.scripts as scripts |
|
import gradio as gr |
|
from PIL import Image |
|
|
|
from modules import processing, shared, sd_samplers, images, devices |
|
from modules.processing import Processed |
|
from modules.shared import opts, cmd_opts, state |
|
|
|
|
|
class Script(scripts.Script): |
|
def title(self): |
|
return "SD upscale" |
|
|
|
def show(self, is_img2img): |
|
return is_img2img |
|
|
|
def ui(self, is_img2img): |
|
info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>") |
|
overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap")) |
|
scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor")) |
|
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", elem_id=self.elem_id("upscaler_index")) |
|
|
|
return [info, overlap, upscaler_index, scale_factor] |
|
|
|
def run(self, p, _, overlap, upscaler_index, scale_factor): |
|
if isinstance(upscaler_index, str): |
|
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower()) |
|
processing.fix_seed(p) |
|
upscaler = shared.sd_upscalers[upscaler_index] |
|
|
|
p.extra_generation_params["SD upscale overlap"] = overlap |
|
p.extra_generation_params["SD upscale upscaler"] = upscaler.name |
|
|
|
initial_info = None |
|
seed = p.seed |
|
|
|
init_img = p.init_images[0] |
|
init_img = images.flatten(init_img, opts.img2img_background_color) |
|
|
|
if upscaler.name != "None": |
|
img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path) |
|
else: |
|
img = init_img |
|
|
|
devices.torch_gc() |
|
|
|
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap) |
|
|
|
batch_size = p.batch_size |
|
upscale_count = p.n_iter |
|
p.n_iter = 1 |
|
p.do_not_save_grid = True |
|
p.do_not_save_samples = True |
|
|
|
work = [] |
|
|
|
for y, h, row in grid.tiles: |
|
for tiledata in row: |
|
work.append(tiledata[2]) |
|
|
|
batch_count = math.ceil(len(work) / batch_size) |
|
state.job_count = batch_count * upscale_count |
|
|
|
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.") |
|
|
|
result_images = [] |
|
for n in range(upscale_count): |
|
start_seed = seed + n |
|
p.seed = start_seed |
|
|
|
work_results = [] |
|
for i in range(batch_count): |
|
p.batch_size = batch_size |
|
p.init_images = work[i * batch_size:(i + 1) * batch_size] |
|
|
|
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}" |
|
processed = processing.process_images(p) |
|
|
|
if initial_info is None: |
|
initial_info = processed.info |
|
|
|
p.seed = processed.seed + 1 |
|
work_results += processed.images |
|
|
|
image_index = 0 |
|
for y, h, row in grid.tiles: |
|
for tiledata in row: |
|
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) |
|
image_index += 1 |
|
|
|
combined_image = images.combine_grid(grid) |
|
result_images.append(combined_image) |
|
|
|
if opts.samples_save: |
|
images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p) |
|
|
|
processed = Processed(p, result_images, seed, initial_info) |
|
|
|
return processed |
|
|