|
|
|
|
|
|
|
|
|
import torch |
|
import pytorch_lightning as pl |
|
import torch.nn.functional as F |
|
from contextlib import contextmanager |
|
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer |
|
from ldm.modules.diffusionmodules.model import Encoder, Decoder |
|
from ldm.util import instantiate_from_config |
|
|
|
import ldm.models.autoencoder |
|
|
|
class VQModel(pl.LightningModule): |
|
def __init__(self, |
|
ddconfig, |
|
lossconfig, |
|
n_embed, |
|
embed_dim, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
image_key="image", |
|
colorize_nlabels=None, |
|
monitor=None, |
|
batch_resize_range=None, |
|
scheduler_config=None, |
|
lr_g_factor=1.0, |
|
remap=None, |
|
sane_index_shape=False, |
|
use_ema=False |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.n_embed = n_embed |
|
self.image_key = image_key |
|
self.encoder = Encoder(**ddconfig) |
|
self.decoder = Decoder(**ddconfig) |
|
self.loss = instantiate_from_config(lossconfig) |
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, |
|
remap=remap, |
|
sane_index_shape=sane_index_shape) |
|
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
if colorize_nlabels is not None: |
|
assert type(colorize_nlabels)==int |
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) |
|
if monitor is not None: |
|
self.monitor = monitor |
|
self.batch_resize_range = batch_resize_range |
|
if self.batch_resize_range is not None: |
|
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.") |
|
|
|
self.use_ema = use_ema |
|
if self.use_ema: |
|
self.model_ema = LitEma(self) |
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
self.scheduler_config = scheduler_config |
|
self.lr_g_factor = lr_g_factor |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.parameters()) |
|
self.model_ema.copy_to(self) |
|
if context is not None: |
|
print(f"{context}: Switched to EMA weights") |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.parameters()) |
|
if context is not None: |
|
print(f"{context}: Restored training weights") |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list()): |
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
missing, unexpected = self.load_state_dict(sd, strict=False) |
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") |
|
if len(missing) > 0: |
|
print(f"Missing Keys: {missing}") |
|
print(f"Unexpected Keys: {unexpected}") |
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
if self.use_ema: |
|
self.model_ema(self) |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
quant, emb_loss, info = self.quantize(h) |
|
return quant, emb_loss, info |
|
|
|
def encode_to_prequant(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
return h |
|
|
|
def decode(self, quant): |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant) |
|
return dec |
|
|
|
def decode_code(self, code_b): |
|
quant_b = self.quantize.embed_code(code_b) |
|
dec = self.decode(quant_b) |
|
return dec |
|
|
|
def forward(self, input, return_pred_indices=False): |
|
quant, diff, (_,_,ind) = self.encode(input) |
|
dec = self.decode(quant) |
|
if return_pred_indices: |
|
return dec, diff, ind |
|
return dec, diff |
|
|
|
def get_input(self, batch, k): |
|
x = batch[k] |
|
if len(x.shape) == 3: |
|
x = x[..., None] |
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() |
|
if self.batch_resize_range is not None: |
|
lower_size = self.batch_resize_range[0] |
|
upper_size = self.batch_resize_range[1] |
|
if self.global_step <= 4: |
|
|
|
new_resize = upper_size |
|
else: |
|
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16)) |
|
if new_resize != x.shape[2]: |
|
x = F.interpolate(x, size=new_resize, mode="bicubic") |
|
x = x.detach() |
|
return x |
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx): |
|
|
|
|
|
x = self.get_input(batch, self.image_key) |
|
xrec, qloss, ind = self(x, return_pred_indices=True) |
|
|
|
if optimizer_idx == 0: |
|
|
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, |
|
last_layer=self.get_last_layer(), split="train", |
|
predicted_indices=ind) |
|
|
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) |
|
return aeloss |
|
|
|
if optimizer_idx == 1: |
|
|
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, |
|
last_layer=self.get_last_layer(), split="train") |
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) |
|
return discloss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
log_dict = self._validation_step(batch, batch_idx) |
|
with self.ema_scope(): |
|
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") |
|
return log_dict |
|
|
|
def _validation_step(self, batch, batch_idx, suffix=""): |
|
x = self.get_input(batch, self.image_key) |
|
xrec, qloss, ind = self(x, return_pred_indices=True) |
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="val"+suffix, |
|
predicted_indices=ind |
|
) |
|
|
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="val"+suffix, |
|
predicted_indices=ind |
|
) |
|
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"] |
|
self.log(f"val{suffix}/rec_loss", rec_loss, |
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) |
|
self.log(f"val{suffix}/aeloss", aeloss, |
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) |
|
if version.parse(pl.__version__) >= version.parse('1.4.0'): |
|
del log_dict_ae[f"val{suffix}/rec_loss"] |
|
self.log_dict(log_dict_ae) |
|
self.log_dict(log_dict_disc) |
|
return self.log_dict |
|
|
|
def configure_optimizers(self): |
|
lr_d = self.learning_rate |
|
lr_g = self.lr_g_factor*self.learning_rate |
|
print("lr_d", lr_d) |
|
print("lr_g", lr_g) |
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ |
|
list(self.decoder.parameters())+ |
|
list(self.quantize.parameters())+ |
|
list(self.quant_conv.parameters())+ |
|
list(self.post_quant_conv.parameters()), |
|
lr=lr_g, betas=(0.5, 0.9)) |
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), |
|
lr=lr_d, betas=(0.5, 0.9)) |
|
|
|
if self.scheduler_config is not None: |
|
scheduler = instantiate_from_config(self.scheduler_config) |
|
|
|
print("Setting up LambdaLR scheduler...") |
|
scheduler = [ |
|
{ |
|
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule), |
|
'interval': 'step', |
|
'frequency': 1 |
|
}, |
|
{ |
|
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule), |
|
'interval': 'step', |
|
'frequency': 1 |
|
}, |
|
] |
|
return [opt_ae, opt_disc], scheduler |
|
return [opt_ae, opt_disc], [] |
|
|
|
def get_last_layer(self): |
|
return self.decoder.conv_out.weight |
|
|
|
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.image_key) |
|
x = x.to(self.device) |
|
if only_inputs: |
|
log["inputs"] = x |
|
return log |
|
xrec, _ = self(x) |
|
if x.shape[1] > 3: |
|
|
|
assert xrec.shape[1] > 3 |
|
x = self.to_rgb(x) |
|
xrec = self.to_rgb(xrec) |
|
log["inputs"] = x |
|
log["reconstructions"] = xrec |
|
if plot_ema: |
|
with self.ema_scope(): |
|
xrec_ema, _ = self(x) |
|
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) |
|
log["reconstructions_ema"] = xrec_ema |
|
return log |
|
|
|
def to_rgb(self, x): |
|
assert self.image_key == "segmentation" |
|
if not hasattr(self, "colorize"): |
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) |
|
x = F.conv2d(x, weight=self.colorize) |
|
x = 2.*(x-x.min())/(x.max()-x.min()) - 1. |
|
return x |
|
|
|
|
|
class VQModelInterface(VQModel): |
|
def __init__(self, embed_dim, *args, **kwargs): |
|
super().__init__(embed_dim=embed_dim, *args, **kwargs) |
|
self.embed_dim = embed_dim |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
return h |
|
|
|
def decode(self, h, force_not_quantize=False): |
|
|
|
if not force_not_quantize: |
|
quant, emb_loss, info = self.quantize(h) |
|
else: |
|
quant = h |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant) |
|
return dec |
|
|
|
setattr(ldm.models.autoencoder, "VQModel", VQModel) |
|
setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface) |
|
|