|
import inspect |
|
from pydantic import BaseModel, Field, create_model |
|
from typing import Any, Optional |
|
from typing_extensions import Literal |
|
from inflection import underscore |
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img |
|
from modules.shared import sd_upscalers, opts, parser |
|
from typing import Dict, List |
|
|
|
API_NOT_ALLOWED = [ |
|
"self", |
|
"kwargs", |
|
"sd_model", |
|
"outpath_samples", |
|
"outpath_grids", |
|
"sampler_index", |
|
|
|
|
|
"extra_generation_params", |
|
"overlay_images", |
|
"do_not_reload_embeddings", |
|
"seed_enable_extras", |
|
"prompt_for_display", |
|
"sampler_noise_scheduler_override", |
|
"ddim_discretize" |
|
] |
|
|
|
class ModelDef(BaseModel): |
|
"""Assistance Class for Pydantic Dynamic Model Generation""" |
|
|
|
field: str |
|
field_alias: str |
|
field_type: Any |
|
field_value: Any |
|
field_exclude: bool = False |
|
|
|
|
|
class PydanticModelGenerator: |
|
""" |
|
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: |
|
source_data is a snapshot of the default values produced by the class |
|
params are the names of the actual keys required by __init__ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model_name: str = None, |
|
class_instance = None, |
|
additional_fields = None, |
|
): |
|
def field_type_generator(k, v): |
|
|
|
|
|
field_type = v.annotation |
|
|
|
return Optional[field_type] |
|
|
|
def merge_class_params(class_): |
|
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) |
|
parameters = {} |
|
for classes in all_classes: |
|
parameters = {**parameters, **inspect.signature(classes.__init__).parameters} |
|
return parameters |
|
|
|
|
|
self._model_name = model_name |
|
self._class_data = merge_class_params(class_instance) |
|
|
|
self._model_def = [ |
|
ModelDef( |
|
field=underscore(k), |
|
field_alias=k, |
|
field_type=field_type_generator(k, v), |
|
field_value=v.default |
|
) |
|
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED |
|
] |
|
|
|
for fields in additional_fields: |
|
self._model_def.append(ModelDef( |
|
field=underscore(fields["key"]), |
|
field_alias=fields["key"], |
|
field_type=fields["type"], |
|
field_value=fields["default"], |
|
field_exclude=fields["exclude"] if "exclude" in fields else False)) |
|
|
|
def generate_model(self): |
|
""" |
|
Creates a pydantic BaseModel |
|
from the json and overrides provided at initialization |
|
""" |
|
fields = { |
|
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def |
|
} |
|
DynamicModel = create_model(self._model_name, **fields) |
|
DynamicModel.__config__.allow_population_by_field_name = True |
|
DynamicModel.__config__.allow_mutation = True |
|
return DynamicModel |
|
|
|
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( |
|
"StableDiffusionProcessingTxt2Img", |
|
StableDiffusionProcessingTxt2Img, |
|
[ |
|
{"key": "sampler_index", "type": str, "default": "Euler"}, |
|
{"key": "script_name", "type": str, "default": None}, |
|
{"key": "script_args", "type": list, "default": []}, |
|
{"key": "send_images", "type": bool, "default": True}, |
|
{"key": "save_images", "type": bool, "default": False}, |
|
] |
|
).generate_model() |
|
|
|
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( |
|
"StableDiffusionProcessingImg2Img", |
|
StableDiffusionProcessingImg2Img, |
|
[ |
|
{"key": "sampler_index", "type": str, "default": "Euler"}, |
|
{"key": "init_images", "type": list, "default": None}, |
|
{"key": "denoising_strength", "type": float, "default": 0.75}, |
|
{"key": "mask", "type": str, "default": None}, |
|
{"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, |
|
{"key": "script_name", "type": str, "default": None}, |
|
{"key": "script_args", "type": list, "default": []}, |
|
{"key": "send_images", "type": bool, "default": True}, |
|
{"key": "save_images", "type": bool, "default": False}, |
|
] |
|
).generate_model() |
|
|
|
class TextToImageResponse(BaseModel): |
|
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") |
|
parameters: dict |
|
info: str |
|
|
|
class ImageToImageResponse(BaseModel): |
|
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") |
|
parameters: dict |
|
info: str |
|
|
|
class ExtrasBaseRequest(BaseModel): |
|
resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.") |
|
show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?") |
|
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") |
|
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") |
|
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") |
|
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.") |
|
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") |
|
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") |
|
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?") |
|
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") |
|
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") |
|
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.") |
|
upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?") |
|
|
|
class ExtraBaseResponse(BaseModel): |
|
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.") |
|
|
|
class ExtrasSingleImageRequest(ExtrasBaseRequest): |
|
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") |
|
|
|
class ExtrasSingleImageResponse(ExtraBaseResponse): |
|
image: str = Field(default=None, title="Image", description="The generated image in base64 format.") |
|
|
|
class FileData(BaseModel): |
|
data: str = Field(title="File data", description="Base64 representation of the file") |
|
name: str = Field(title="File name") |
|
|
|
class ExtrasBatchImagesRequest(ExtrasBaseRequest): |
|
imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings") |
|
|
|
class ExtrasBatchImagesResponse(ExtraBaseResponse): |
|
images: List[str] = Field(title="Images", description="The generated images in base64 format.") |
|
|
|
class PNGInfoRequest(BaseModel): |
|
image: str = Field(title="Image", description="The base64 encoded PNG image") |
|
|
|
class PNGInfoResponse(BaseModel): |
|
info: str = Field(title="Image info", description="A string with the parameters used to generate the image") |
|
items: dict = Field(title="Items", description="An object containing all the info the image had") |
|
|
|
class ProgressRequest(BaseModel): |
|
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization") |
|
|
|
class ProgressResponse(BaseModel): |
|
progress: float = Field(title="Progress", description="The progress with a range of 0 to 1") |
|
eta_relative: float = Field(title="ETA in secs") |
|
state: dict = Field(title="State", description="The current state snapshot") |
|
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.") |
|
textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.") |
|
|
|
class InterrogateRequest(BaseModel): |
|
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") |
|
model: str = Field(default="clip", title="Model", description="The interrogate model used.") |
|
|
|
class InterrogateResponse(BaseModel): |
|
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.") |
|
|
|
class TrainResponse(BaseModel): |
|
info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.") |
|
|
|
class CreateResponse(BaseModel): |
|
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.") |
|
|
|
class PreprocessResponse(BaseModel): |
|
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.") |
|
|
|
fields = {} |
|
for key, metadata in opts.data_labels.items(): |
|
value = opts.data.get(key) |
|
optType = opts.typemap.get(type(metadata.default), type(value)) |
|
|
|
if (metadata is not None): |
|
fields.update({key: (Optional[optType], Field( |
|
default=metadata.default ,description=metadata.label))}) |
|
else: |
|
fields.update({key: (Optional[optType], Field())}) |
|
|
|
OptionsModel = create_model("Options", **fields) |
|
|
|
flags = {} |
|
_options = vars(parser)['_option_string_actions'] |
|
for key in _options: |
|
if(_options[key].dest != 'help'): |
|
flag = _options[key] |
|
_type = str |
|
if _options[key].default is not None: _type = type(_options[key].default) |
|
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))}) |
|
|
|
FlagsModel = create_model("Flags", **flags) |
|
|
|
class SamplerItem(BaseModel): |
|
name: str = Field(title="Name") |
|
aliases: List[str] = Field(title="Aliases") |
|
options: Dict[str, str] = Field(title="Options") |
|
|
|
class UpscalerItem(BaseModel): |
|
name: str = Field(title="Name") |
|
model_name: Optional[str] = Field(title="Model Name") |
|
model_path: Optional[str] = Field(title="Path") |
|
model_url: Optional[str] = Field(title="URL") |
|
scale: Optional[float] = Field(title="Scale") |
|
|
|
class SDModelItem(BaseModel): |
|
title: str = Field(title="Title") |
|
model_name: str = Field(title="Model Name") |
|
hash: Optional[str] = Field(title="Short hash") |
|
sha256: Optional[str] = Field(title="sha256 hash") |
|
filename: str = Field(title="Filename") |
|
config: Optional[str] = Field(title="Config file") |
|
|
|
class HypernetworkItem(BaseModel): |
|
name: str = Field(title="Name") |
|
path: Optional[str] = Field(title="Path") |
|
|
|
class FaceRestorerItem(BaseModel): |
|
name: str = Field(title="Name") |
|
cmd_dir: Optional[str] = Field(title="Path") |
|
|
|
class RealesrganItem(BaseModel): |
|
name: str = Field(title="Name") |
|
path: Optional[str] = Field(title="Path") |
|
scale: Optional[int] = Field(title="Scale") |
|
|
|
class PromptStyleItem(BaseModel): |
|
name: str = Field(title="Name") |
|
prompt: Optional[str] = Field(title="Prompt") |
|
negative_prompt: Optional[str] = Field(title="Negative Prompt") |
|
|
|
class ArtistItem(BaseModel): |
|
name: str = Field(title="Name") |
|
score: float = Field(title="Score") |
|
category: str = Field(title="Category") |
|
|
|
class EmbeddingItem(BaseModel): |
|
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available") |
|
sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available") |
|
sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead") |
|
shape: int = Field(title="Shape", description="The length of each individual vector in the embedding") |
|
vectors: int = Field(title="Vectors", description="The number of vectors in the embedding") |
|
|
|
class EmbeddingsResponse(BaseModel): |
|
loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") |
|
skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") |
|
|
|
class MemoryResponse(BaseModel): |
|
ram: dict = Field(title="RAM", description="System memory stats") |
|
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats") |
|
|
|
class ScriptsList(BaseModel): |
|
txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)") |
|
img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") |