|
import torch |
|
from torch.nn.functional import silu |
|
from types import MethodType |
|
|
|
import modules.textual_inversion.textual_inversion |
|
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint |
|
from modules.hypernetworks import hypernetwork |
|
from modules.shared import cmd_opts |
|
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr |
|
|
|
import ldm.modules.attention |
|
import ldm.modules.diffusionmodules.model |
|
import ldm.modules.diffusionmodules.openaimodel |
|
import ldm.models.diffusion.ddim |
|
import ldm.models.diffusion.plms |
|
import ldm.modules.encoders.modules |
|
|
|
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward |
|
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity |
|
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward |
|
|
|
|
|
|
|
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention |
|
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention |
|
|
|
|
|
ldm.modules.attention.print = lambda *args: None |
|
ldm.modules.diffusionmodules.model.print = lambda *args: None |
|
|
|
|
|
def apply_optimizations(): |
|
undo_optimizations() |
|
|
|
ldm.modules.diffusionmodules.model.nonlinearity = silu |
|
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th |
|
|
|
optimization_method = None |
|
|
|
can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(getattr(torch.nn.functional, "scaled_dot_product_attention")) |
|
|
|
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): |
|
print("Applying xformers cross attention optimization.") |
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward |
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward |
|
optimization_method = 'xformers' |
|
elif cmd_opts.opt_sdp_no_mem_attention and can_use_sdp: |
|
print("Applying scaled dot product cross attention optimization (without memory efficient attention).") |
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_no_mem_attention_forward |
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_no_mem_attnblock_forward |
|
optimization_method = 'sdp-no-mem' |
|
elif cmd_opts.opt_sdp_attention and can_use_sdp: |
|
print("Applying scaled dot product cross attention optimization.") |
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_attention_forward |
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_attnblock_forward |
|
optimization_method = 'sdp' |
|
elif cmd_opts.opt_sub_quad_attention: |
|
print("Applying sub-quadratic cross attention optimization.") |
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward |
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward |
|
optimization_method = 'sub-quadratic' |
|
elif cmd_opts.opt_split_attention_v1: |
|
print("Applying v1 cross attention optimization.") |
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 |
|
optimization_method = 'V1' |
|
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()): |
|
print("Applying cross attention optimization (InvokeAI).") |
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI |
|
optimization_method = 'InvokeAI' |
|
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): |
|
print("Applying cross attention optimization (Doggettx).") |
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward |
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward |
|
optimization_method = 'Doggettx' |
|
|
|
return optimization_method |
|
|
|
|
|
def undo_optimizations(): |
|
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward |
|
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity |
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward |
|
|
|
|
|
def fix_checkpoint(): |
|
"""checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want |
|
checkpoints to be added when not training (there's a warning)""" |
|
|
|
pass |
|
|
|
|
|
def weighted_loss(sd_model, pred, target, mean=True): |
|
|
|
loss = sd_model._old_get_loss(pred, target, mean=False) |
|
|
|
|
|
weight = getattr(sd_model, '_custom_loss_weight', None) |
|
if weight is not None: |
|
loss *= weight |
|
|
|
|
|
return loss.mean() if mean else loss |
|
|
|
def weighted_forward(sd_model, x, c, w, *args, **kwargs): |
|
try: |
|
|
|
sd_model._custom_loss_weight = w |
|
|
|
|
|
|
|
if not hasattr(sd_model, '_old_get_loss'): |
|
sd_model._old_get_loss = sd_model.get_loss |
|
sd_model.get_loss = MethodType(weighted_loss, sd_model) |
|
|
|
|
|
return sd_model.forward(x, c, *args, **kwargs) |
|
finally: |
|
try: |
|
|
|
del sd_model._custom_loss_weight |
|
except AttributeError as e: |
|
pass |
|
|
|
|
|
if hasattr(sd_model, '_old_get_loss'): |
|
sd_model.get_loss = sd_model._old_get_loss |
|
del sd_model._old_get_loss |
|
|
|
def apply_weighted_forward(sd_model): |
|
|
|
sd_model.weighted_forward = MethodType(weighted_forward, sd_model) |
|
|
|
def undo_weighted_forward(sd_model): |
|
try: |
|
del sd_model.weighted_forward |
|
except AttributeError as e: |
|
pass |
|
|
|
|
|
class StableDiffusionModelHijack: |
|
fixes = None |
|
comments = [] |
|
layers = None |
|
circular_enabled = False |
|
clip = None |
|
optimization_method = None |
|
|
|
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase() |
|
|
|
def __init__(self): |
|
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir) |
|
|
|
def hijack(self, m): |
|
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: |
|
model_embeddings = m.cond_stage_model.roberta.embeddings |
|
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) |
|
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self) |
|
|
|
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder: |
|
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings |
|
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) |
|
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) |
|
|
|
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder: |
|
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self) |
|
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) |
|
|
|
apply_weighted_forward(m) |
|
if m.cond_stage_key == "edit": |
|
sd_hijack_unet.hijack_ddpm_edit() |
|
|
|
self.optimization_method = apply_optimizations() |
|
|
|
self.clip = m.cond_stage_model |
|
|
|
def flatten(el): |
|
flattened = [flatten(children) for children in el.children()] |
|
res = [el] |
|
for c in flattened: |
|
res += c |
|
return res |
|
|
|
self.layers = flatten(m) |
|
|
|
def undo_hijack(self, m): |
|
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: |
|
m.cond_stage_model = m.cond_stage_model.wrapped |
|
|
|
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: |
|
m.cond_stage_model = m.cond_stage_model.wrapped |
|
|
|
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings |
|
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes: |
|
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped |
|
elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords: |
|
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped |
|
m.cond_stage_model = m.cond_stage_model.wrapped |
|
|
|
undo_optimizations() |
|
undo_weighted_forward(m) |
|
|
|
self.apply_circular(False) |
|
self.layers = None |
|
self.clip = None |
|
|
|
def apply_circular(self, enable): |
|
if self.circular_enabled == enable: |
|
return |
|
|
|
self.circular_enabled = enable |
|
|
|
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]: |
|
layer.padding_mode = 'circular' if enable else 'zeros' |
|
|
|
def clear_comments(self): |
|
self.comments = [] |
|
|
|
def get_prompt_lengths(self, text): |
|
_, token_count = self.clip.process_texts([text]) |
|
|
|
return token_count, self.clip.get_target_prompt_token_count(token_count) |
|
|
|
|
|
class EmbeddingsWithFixes(torch.nn.Module): |
|
def __init__(self, wrapped, embeddings): |
|
super().__init__() |
|
self.wrapped = wrapped |
|
self.embeddings = embeddings |
|
|
|
def forward(self, input_ids): |
|
batch_fixes = self.embeddings.fixes |
|
self.embeddings.fixes = None |
|
|
|
inputs_embeds = self.wrapped(input_ids) |
|
|
|
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0: |
|
return inputs_embeds |
|
|
|
vecs = [] |
|
for fixes, tensor in zip(batch_fixes, inputs_embeds): |
|
for offset, embedding in fixes: |
|
emb = devices.cond_cast_unet(embedding.vec) |
|
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0]) |
|
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]) |
|
|
|
vecs.append(tensor) |
|
|
|
return torch.stack(vecs) |
|
|
|
|
|
def add_circular_option_to_conv_2d(): |
|
conv2d_constructor = torch.nn.Conv2d.__init__ |
|
|
|
def conv2d_constructor_circular(self, *args, **kwargs): |
|
return conv2d_constructor(self, *args, padding_mode='circular', **kwargs) |
|
|
|
torch.nn.Conv2d.__init__ = conv2d_constructor_circular |
|
|
|
|
|
model_hijack = StableDiffusionModelHijack() |
|
|
|
|
|
def register_buffer(self, name, attr): |
|
""" |
|
Fix register buffer bug for Mac OS. |
|
""" |
|
|
|
if type(attr) == torch.Tensor: |
|
if attr.device != devices.device: |
|
attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None)) |
|
|
|
setattr(self, name, attr) |
|
|
|
|
|
ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer |
|
ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer |
|
|