|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from einops.layers.torch import Rearrange |
|
from timm.models.layers import trunc_normal_, DropPath |
|
|
|
|
|
class WMSA(nn.Module): |
|
""" Self-attention module in Swin Transformer |
|
""" |
|
|
|
def __init__(self, input_dim, output_dim, head_dim, window_size, type): |
|
super(WMSA, self).__init__() |
|
self.input_dim = input_dim |
|
self.output_dim = output_dim |
|
self.head_dim = head_dim |
|
self.scale = self.head_dim ** -0.5 |
|
self.n_heads = input_dim // head_dim |
|
self.window_size = window_size |
|
self.type = type |
|
self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True) |
|
|
|
self.relative_position_params = nn.Parameter( |
|
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads)) |
|
|
|
self.linear = nn.Linear(self.input_dim, self.output_dim) |
|
|
|
trunc_normal_(self.relative_position_params, std=.02) |
|
self.relative_position_params = torch.nn.Parameter( |
|
self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1, |
|
2).transpose( |
|
0, 1)) |
|
|
|
def generate_mask(self, h, w, p, shift): |
|
""" generating the mask of SW-MSA |
|
Args: |
|
shift: shift parameters in CyclicShift. |
|
Returns: |
|
attn_mask: should be (1 1 w p p), |
|
""" |
|
|
|
attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device) |
|
if self.type == 'W': |
|
return attn_mask |
|
|
|
s = p - shift |
|
attn_mask[-1, :, :s, :, s:, :] = True |
|
attn_mask[-1, :, s:, :, :s, :] = True |
|
attn_mask[:, -1, :, :s, :, s:] = True |
|
attn_mask[:, -1, :, s:, :, :s] = True |
|
attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)') |
|
return attn_mask |
|
|
|
def forward(self, x): |
|
""" Forward pass of Window Multi-head Self-attention module. |
|
Args: |
|
x: input tensor with shape of [b h w c]; |
|
attn_mask: attention mask, fill -inf where the value is True; |
|
Returns: |
|
output: tensor shape [b h w c] |
|
""" |
|
if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) |
|
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) |
|
h_windows = x.size(1) |
|
w_windows = x.size(2) |
|
|
|
|
|
|
|
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size) |
|
qkv = self.embedding_layer(x) |
|
q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0) |
|
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale |
|
|
|
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q') |
|
|
|
if self.type != 'W': |
|
attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2) |
|
sim = sim.masked_fill_(attn_mask, float("-inf")) |
|
|
|
probs = nn.functional.softmax(sim, dim=-1) |
|
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v) |
|
output = rearrange(output, 'h b w p c -> b w p (h c)') |
|
output = self.linear(output) |
|
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size) |
|
|
|
if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), |
|
dims=(1, 2)) |
|
return output |
|
|
|
def relative_embedding(self): |
|
cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)])) |
|
relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1 |
|
|
|
return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()] |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None): |
|
""" SwinTransformer Block |
|
""" |
|
super(Block, self).__init__() |
|
self.input_dim = input_dim |
|
self.output_dim = output_dim |
|
assert type in ['W', 'SW'] |
|
self.type = type |
|
if input_resolution <= window_size: |
|
self.type = 'W' |
|
|
|
self.ln1 = nn.LayerNorm(input_dim) |
|
self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.ln2 = nn.LayerNorm(input_dim) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(input_dim, 4 * input_dim), |
|
nn.GELU(), |
|
nn.Linear(4 * input_dim, output_dim), |
|
) |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path(self.msa(self.ln1(x))) |
|
x = x + self.drop_path(self.mlp(self.ln2(x))) |
|
return x |
|
|
|
|
|
class ConvTransBlock(nn.Module): |
|
def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None): |
|
""" SwinTransformer and Conv Block |
|
""" |
|
super(ConvTransBlock, self).__init__() |
|
self.conv_dim = conv_dim |
|
self.trans_dim = trans_dim |
|
self.head_dim = head_dim |
|
self.window_size = window_size |
|
self.drop_path = drop_path |
|
self.type = type |
|
self.input_resolution = input_resolution |
|
|
|
assert self.type in ['W', 'SW'] |
|
if self.input_resolution <= self.window_size: |
|
self.type = 'W' |
|
|
|
self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path, |
|
self.type, self.input_resolution) |
|
self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True) |
|
self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True) |
|
|
|
self.conv_block = nn.Sequential( |
|
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False), |
|
nn.ReLU(True), |
|
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1) |
|
conv_x = self.conv_block(conv_x) + conv_x |
|
trans_x = Rearrange('b c h w -> b h w c')(trans_x) |
|
trans_x = self.trans_block(trans_x) |
|
trans_x = Rearrange('b h w c -> b c h w')(trans_x) |
|
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1)) |
|
x = x + res |
|
|
|
return x |
|
|
|
|
|
class SCUNet(nn.Module): |
|
|
|
def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256): |
|
super(SCUNet, self).__init__() |
|
if config is None: |
|
config = [2, 2, 2, 2, 2, 2, 2] |
|
self.config = config |
|
self.dim = dim |
|
self.head_dim = 32 |
|
self.window_size = 8 |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))] |
|
|
|
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)] |
|
|
|
begin = 0 |
|
self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin], |
|
'W' if not i % 2 else 'SW', input_resolution) |
|
for i in range(config[0])] + \ |
|
[nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)] |
|
|
|
begin += config[0] |
|
self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin], |
|
'W' if not i % 2 else 'SW', input_resolution // 2) |
|
for i in range(config[1])] + \ |
|
[nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)] |
|
|
|
begin += config[1] |
|
self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin], |
|
'W' if not i % 2 else 'SW', input_resolution // 4) |
|
for i in range(config[2])] + \ |
|
[nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)] |
|
|
|
begin += config[2] |
|
self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin], |
|
'W' if not i % 2 else 'SW', input_resolution // 8) |
|
for i in range(config[3])] |
|
|
|
begin += config[3] |
|
self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \ |
|
[ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin], |
|
'W' if not i % 2 else 'SW', input_resolution // 4) |
|
for i in range(config[4])] |
|
|
|
begin += config[4] |
|
self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \ |
|
[ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin], |
|
'W' if not i % 2 else 'SW', input_resolution // 2) |
|
for i in range(config[5])] |
|
|
|
begin += config[5] |
|
self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \ |
|
[ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin], |
|
'W' if not i % 2 else 'SW', input_resolution) |
|
for i in range(config[6])] |
|
|
|
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)] |
|
|
|
self.m_head = nn.Sequential(*self.m_head) |
|
self.m_down1 = nn.Sequential(*self.m_down1) |
|
self.m_down2 = nn.Sequential(*self.m_down2) |
|
self.m_down3 = nn.Sequential(*self.m_down3) |
|
self.m_body = nn.Sequential(*self.m_body) |
|
self.m_up3 = nn.Sequential(*self.m_up3) |
|
self.m_up2 = nn.Sequential(*self.m_up2) |
|
self.m_up1 = nn.Sequential(*self.m_up1) |
|
self.m_tail = nn.Sequential(*self.m_tail) |
|
|
|
|
|
def forward(self, x0): |
|
|
|
h, w = x0.size()[-2:] |
|
paddingBottom = int(np.ceil(h / 64) * 64 - h) |
|
paddingRight = int(np.ceil(w / 64) * 64 - w) |
|
x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0) |
|
|
|
x1 = self.m_head(x0) |
|
x2 = self.m_down1(x1) |
|
x3 = self.m_down2(x2) |
|
x4 = self.m_down3(x3) |
|
x = self.m_body(x4) |
|
x = self.m_up3(x + x4) |
|
x = self.m_up2(x + x3) |
|
x = self.m_up1(x + x2) |
|
x = self.m_tail(x + x1) |
|
|
|
x = x[..., :h, :w] |
|
|
|
return x |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |