|
import os.path |
|
import sys |
|
import traceback |
|
|
|
import PIL.Image |
|
import numpy as np |
|
import torch |
|
from basicsr.utils.download_util import load_file_from_url |
|
|
|
import modules.upscaler |
|
from modules import devices, modelloader |
|
from scunet_model_arch import SCUNet as net |
|
|
|
|
|
class UpscalerScuNET(modules.upscaler.Upscaler): |
|
def __init__(self, dirname): |
|
self.name = "ScuNET" |
|
self.model_name = "ScuNET GAN" |
|
self.model_name2 = "ScuNET PSNR" |
|
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth" |
|
self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth" |
|
self.user_path = dirname |
|
super().__init__() |
|
model_paths = self.find_models(ext_filter=[".pth"]) |
|
scalers = [] |
|
add_model2 = True |
|
for file in model_paths: |
|
if "http" in file: |
|
name = self.model_name |
|
else: |
|
name = modelloader.friendly_name(file) |
|
if name == self.model_name2 or file == self.model_url2: |
|
add_model2 = False |
|
try: |
|
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) |
|
scalers.append(scaler_data) |
|
except Exception: |
|
print(f"Error loading ScuNET model: {file}", file=sys.stderr) |
|
print(traceback.format_exc(), file=sys.stderr) |
|
if add_model2: |
|
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self) |
|
scalers.append(scaler_data2) |
|
self.scalers = scalers |
|
|
|
def do_upscale(self, img: PIL.Image, selected_file): |
|
torch.cuda.empty_cache() |
|
|
|
model = self.load_model(selected_file) |
|
if model is None: |
|
return img |
|
|
|
device = devices.get_device_for('scunet') |
|
img = np.array(img) |
|
img = img[:, :, ::-1] |
|
img = np.moveaxis(img, 2, 0) / 255 |
|
img = torch.from_numpy(img).float() |
|
img = img.unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
output = model(img) |
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output = 255. * np.moveaxis(output, 0, 2) |
|
output = output.astype(np.uint8) |
|
output = output[:, :, ::-1] |
|
torch.cuda.empty_cache() |
|
return PIL.Image.fromarray(output, 'RGB') |
|
|
|
def load_model(self, path: str): |
|
device = devices.get_device_for('scunet') |
|
if "http" in path: |
|
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name, |
|
progress=True) |
|
else: |
|
filename = path |
|
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None: |
|
print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr) |
|
return None |
|
|
|
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) |
|
model.load_state_dict(torch.load(filename), strict=True) |
|
model.eval() |
|
for k, v in model.named_parameters(): |
|
v.requires_grad = False |
|
model = model.to(device) |
|
|
|
return model |
|
|
|
|