|
import base64 |
|
import json |
|
import numpy as np |
|
import zlib |
|
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont |
|
from fonts.ttf import Roboto |
|
import torch |
|
from modules.shared import opts |
|
|
|
|
|
class EmbeddingEncoder(json.JSONEncoder): |
|
def default(self, obj): |
|
if isinstance(obj, torch.Tensor): |
|
return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()} |
|
return json.JSONEncoder.default(self, obj) |
|
|
|
|
|
class EmbeddingDecoder(json.JSONDecoder): |
|
def __init__(self, *args, **kwargs): |
|
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs) |
|
|
|
def object_hook(self, d): |
|
if 'TORCHTENSOR' in d: |
|
return torch.from_numpy(np.array(d['TORCHTENSOR'])) |
|
return d |
|
|
|
|
|
def embedding_to_b64(data): |
|
d = json.dumps(data, cls=EmbeddingEncoder) |
|
return base64.b64encode(d.encode()) |
|
|
|
|
|
def embedding_from_b64(data): |
|
d = base64.b64decode(data) |
|
return json.loads(d, cls=EmbeddingDecoder) |
|
|
|
|
|
def lcg(m=2**32, a=1664525, c=1013904223, seed=0): |
|
while True: |
|
seed = (a * seed + c) % m |
|
yield seed % 255 |
|
|
|
|
|
def xor_block(block): |
|
g = lcg() |
|
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape) |
|
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F) |
|
|
|
|
|
def style_block(block, sequence): |
|
im = Image.new('RGB', (block.shape[1], block.shape[0])) |
|
draw = ImageDraw.Draw(im) |
|
i = 0 |
|
for x in range(-6, im.size[0], 8): |
|
for yi, y in enumerate(range(-6, im.size[1], 8)): |
|
offset = 0 |
|
if yi % 2 == 0: |
|
offset = 4 |
|
shade = sequence[i % len(sequence)] |
|
i += 1 |
|
draw.ellipse((x+offset, y, x+6+offset, y+6), fill=(shade, shade, shade)) |
|
|
|
fg = np.array(im).astype(np.uint8) & 0xF0 |
|
|
|
return block ^ fg |
|
|
|
|
|
def insert_image_data_embed(image, data): |
|
d = 3 |
|
data_compressed = zlib.compress(json.dumps(data, cls=EmbeddingEncoder).encode(), level=9) |
|
data_np_ = np.frombuffer(data_compressed, np.uint8).copy() |
|
data_np_high = data_np_ >> 4 |
|
data_np_low = data_np_ & 0x0F |
|
|
|
h = image.size[1] |
|
next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h)) |
|
next_size = next_size + ((h*d)-(next_size % (h*d))) |
|
|
|
data_np_low = np.resize(data_np_low, next_size) |
|
data_np_low = data_np_low.reshape((h, -1, d)) |
|
|
|
data_np_high = np.resize(data_np_high, next_size) |
|
data_np_high = data_np_high.reshape((h, -1, d)) |
|
|
|
edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024] |
|
edge_style = (np.abs(edge_style)/np.max(np.abs(edge_style))*255).astype(np.uint8) |
|
|
|
data_np_low = style_block(data_np_low, sequence=edge_style) |
|
data_np_low = xor_block(data_np_low) |
|
data_np_high = style_block(data_np_high, sequence=edge_style[::-1]) |
|
data_np_high = xor_block(data_np_high) |
|
|
|
im_low = Image.fromarray(data_np_low, mode='RGB') |
|
im_high = Image.fromarray(data_np_high, mode='RGB') |
|
|
|
background = Image.new('RGB', (image.size[0]+im_low.size[0]+im_high.size[0]+2, image.size[1]), (0, 0, 0)) |
|
background.paste(im_low, (0, 0)) |
|
background.paste(image, (im_low.size[0]+1, 0)) |
|
background.paste(im_high, (im_low.size[0]+1+image.size[0]+1, 0)) |
|
|
|
return background |
|
|
|
|
|
def crop_black(img, tol=0): |
|
mask = (img > tol).all(2) |
|
mask0, mask1 = mask.any(0), mask.any(1) |
|
col_start, col_end = mask0.argmax(), mask.shape[1]-mask0[::-1].argmax() |
|
row_start, row_end = mask1.argmax(), mask.shape[0]-mask1[::-1].argmax() |
|
return img[row_start:row_end, col_start:col_end] |
|
|
|
|
|
def extract_image_data_embed(image): |
|
d = 3 |
|
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F |
|
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0) |
|
if black_cols[0].shape[0] < 2: |
|
print('No Image data blocks found.') |
|
return None |
|
|
|
data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8) |
|
data_block_upper = outarr[:, black_cols[0].max()+1:, :].astype(np.uint8) |
|
|
|
data_block_lower = xor_block(data_block_lower) |
|
data_block_upper = xor_block(data_block_upper) |
|
|
|
data_block = (data_block_upper << 4) | (data_block_lower) |
|
data_block = data_block.flatten().tobytes() |
|
|
|
data = zlib.decompress(data_block) |
|
return json.loads(data, cls=EmbeddingDecoder) |
|
|
|
|
|
def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, textfont=None): |
|
from math import cos |
|
|
|
image = srcimage.copy() |
|
fontsize = 32 |
|
if textfont is None: |
|
try: |
|
textfont = ImageFont.truetype(opts.font or Roboto, fontsize) |
|
textfont = opts.font or Roboto |
|
except Exception: |
|
textfont = Roboto |
|
|
|
factor = 1.5 |
|
gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0)) |
|
for y in range(image.size[1]): |
|
mag = 1-cos(y/image.size[1]*factor) |
|
mag = max(mag, 1-cos((image.size[1]-y)/image.size[1]*factor*1.1)) |
|
gradient.putpixel((0, y), (0, 0, 0, int(mag*255))) |
|
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size)) |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
font = ImageFont.truetype(textfont, fontsize) |
|
padding = 10 |
|
|
|
_, _, w, h = draw.textbbox((0, 0), title, font=font) |
|
fontsize = min(int(fontsize * (((image.size[0]*0.75)-(padding*4))/w)), 72) |
|
font = ImageFont.truetype(textfont, fontsize) |
|
_, _, w, h = draw.textbbox((0, 0), title, font=font) |
|
draw.text((padding, padding), title, anchor='lt', font=font, fill=(255, 255, 255, 230)) |
|
|
|
_, _, w, h = draw.textbbox((0, 0), footerLeft, font=font) |
|
fontsize_left = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72) |
|
_, _, w, h = draw.textbbox((0, 0), footerMid, font=font) |
|
fontsize_mid = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72) |
|
_, _, w, h = draw.textbbox((0, 0), footerRight, font=font) |
|
fontsize_right = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72) |
|
|
|
font = ImageFont.truetype(textfont, min(fontsize_left, fontsize_mid, fontsize_right)) |
|
|
|
draw.text((padding, image.size[1]-padding), footerLeft, anchor='ls', font=font, fill=(255, 255, 255, 230)) |
|
draw.text((image.size[0]/2, image.size[1]-padding), footerMid, anchor='ms', font=font, fill=(255, 255, 255, 230)) |
|
draw.text((image.size[0]-padding, image.size[1]-padding), footerRight, anchor='rs', font=font, fill=(255, 255, 255, 230)) |
|
|
|
return image |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
testEmbed = Image.open('test_embedding.png') |
|
data = extract_image_data_embed(testEmbed) |
|
assert data is not None |
|
|
|
data = embedding_from_b64(testEmbed.text['sd-ti-embedding']) |
|
assert data is not None |
|
|
|
image = Image.new('RGBA', (512, 512), (255, 255, 200, 255)) |
|
cap_image = caption_image_overlay(image, 'title', 'footerLeft', 'footerMid', 'footerRight') |
|
|
|
test_embed = {'string_to_param': {'*': torch.from_numpy(np.random.random((2, 4096)))}} |
|
|
|
embedded_image = insert_image_data_embed(cap_image, test_embed) |
|
|
|
retrived_embed = extract_image_data_embed(embedded_image) |
|
|
|
assert str(retrived_embed) == str(test_embed) |
|
|
|
embedded_image2 = insert_image_data_embed(cap_image, retrived_embed) |
|
|
|
assert embedded_image == embedded_image2 |
|
|
|
g = lcg() |
|
shared_random = np.array([next(g) for _ in range(100)]).astype(np.uint8).tolist() |
|
|
|
reference_random = [253, 242, 127, 44, 157, 27, 239, 133, 38, 79, 167, 4, 177, |
|
95, 130, 79, 78, 14, 52, 215, 220, 194, 126, 28, 240, 179, |
|
160, 153, 149, 50, 105, 14, 21, 218, 199, 18, 54, 198, 193, |
|
38, 128, 19, 53, 195, 124, 75, 205, 12, 6, 145, 0, 28, |
|
30, 148, 8, 45, 218, 171, 55, 249, 97, 166, 12, 35, 0, |
|
41, 221, 122, 215, 170, 31, 113, 186, 97, 119, 31, 23, 185, |
|
66, 140, 30, 41, 37, 63, 137, 109, 216, 55, 159, 145, 82, |
|
204, 86, 73, 222, 44, 198, 118, 240, 97] |
|
|
|
assert shared_random == reference_random |
|
|
|
hunna_kay_random_sum = sum(np.array([next(g) for _ in range(100000)]).astype(np.uint8).tolist()) |
|
|
|
assert 12731374 == hunna_kay_random_sum |
|
|