|
"""SAMPLING ONLY.""" |
|
|
|
import torch |
|
|
|
from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC |
|
from modules import shared, devices |
|
|
|
|
|
class UniPCSampler(object): |
|
def __init__(self, model, **kwargs): |
|
super().__init__() |
|
self.model = model |
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device) |
|
self.before_sample = None |
|
self.after_sample = None |
|
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod)) |
|
|
|
def register_buffer(self, name, attr): |
|
if type(attr) == torch.Tensor: |
|
if attr.device != devices.device: |
|
attr = attr.to(devices.device) |
|
setattr(self, name, attr) |
|
|
|
def set_hooks(self, before_sample, after_sample, after_update): |
|
self.before_sample = before_sample |
|
self.after_sample = after_sample |
|
self.after_update = after_update |
|
|
|
@torch.no_grad() |
|
def sample(self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0., |
|
mask=None, |
|
x0=None, |
|
temperature=1., |
|
noise_dropout=0., |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1., |
|
unconditional_conditioning=None, |
|
|
|
**kwargs |
|
): |
|
if conditioning is not None: |
|
if isinstance(conditioning, dict): |
|
ctmp = conditioning[list(conditioning.keys())[0]] |
|
while isinstance(ctmp, list): ctmp = ctmp[0] |
|
cbs = ctmp.shape[0] |
|
if cbs != batch_size: |
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
|
|
elif isinstance(conditioning, list): |
|
for ctmp in conditioning: |
|
if ctmp.shape[0] != batch_size: |
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
|
|
else: |
|
if conditioning.shape[0] != batch_size: |
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") |
|
|
|
|
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
print(f'Data shape for UniPC sampling is {size}') |
|
|
|
device = self.model.betas.device |
|
if x_T is None: |
|
img = torch.randn(size, device=device) |
|
else: |
|
img = x_T |
|
|
|
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) |
|
|
|
|
|
model_type = "v" if self.model.parameterization == "v" else "noise" |
|
|
|
model_fn = model_wrapper( |
|
lambda x, t, c: self.model.apply_model(x, t, c), |
|
ns, |
|
model_type=model_type, |
|
guidance_type="classifier-free", |
|
|
|
|
|
guidance_scale=unconditional_guidance_scale, |
|
) |
|
|
|
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update) |
|
x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final) |
|
|
|
return x.to(device), None |
|
|