supertori's picture
Upload 215 files
ae26e7d
raw
history blame
3.7 kB
import os
import numpy as np
import cv2
import gradio as gr
import modules.scripts as scripts
from modules import script_callbacks
from modules import extensions
from basicsr.utils.download_util import load_file_from_url
from scripts.openpose.body import Body
body_estimation = None
def pil2cv(in_image):
out_image = np.array(in_image, dtype=np.uint8)
if out_image.shape[2] == 3:
out_image = cv2.cvtColor(out_image, cv2.COLOR_RGB2BGR)
return out_image
def candidate2li(li):
res = []
for x, y, *_ in li:
res.append([x, y])
return res
def subset2li(li):
res = []
for r in li:
for c in r:
res.append(c)
return res
class Script(scripts.Script):
def __init__(self) -> None:
super().__init__()
def title(self):
return "OpenPose Editor"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
return ()
def on_ui_tabs():
with gr.Blocks(analytics_enabled=False) as openpose_editor:
with gr.Row():
with gr.Column():
width = gr.Slider(label="width", minimum=64, maximum=2048, value=512, step=64, interactive=True)
height = gr.Slider(label="height", minimum=64, maximum=2048, value=512, step=64, interactive=True)
with gr.Row():
add = gr.Button(value="Add", variant="primary")
# delete = gr.Button(value="Delete")
with gr.Row():
reset_btn = gr.Button(value="Reset")
json_input = gr.Button(value="Load from JSON")
png_input = gr.Button(value="Detect from image")
png_input_area = gr.Image(label="Detect from image", elem_id="openpose_editor_input")
bg_input = gr.Button(value="Add Background image")
with gr.Column():
# gradioooooo...
canvas = gr.HTML('<canvas id="openpose_editor_canvas" width="512" height="512" style="margin: 0.25rem; border-radius: 0.25rem; border: 0.5px solid"></canvas>')
jsonbox = gr.Text(label="json", elem_id="hide_json")
with gr.Row():
json_output = gr.Button(value="Save JSON")
png_output = gr.Button(value="Save PNG")
send_output = gr.Button(value="Send to ControlNet")
def estimate(img):
global body_estimation
modeldir = os.path.join(extensions.extensions_dir, "sd-webui-controlnet", "annotator", "openpose")
if body_estimation is None:
if not os.path.isfile(os.path.join(modeldir, "body_pose_model.pth")):
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
load_file_from_url(body_model_path, model_dir=modeldir)
body_estimation = Body(os.path.join(modeldir, "body_pose_model.pth"))
candidate, subset = body_estimation(pil2cv(img))
result = {
"candidate": candidate2li(candidate),
"subset": subset2li(subset)
}
return result
width.change(None, [width, height], None, _js="(w, h) => {resizeCanvas(w, h)}")
height.change(None, [width, height], None, _js="(w, h) => {resizeCanvas(w, h)}")
png_output.click(None, [], None, _js="savePNG")
bg_input.click(None, [], None, _js="addBackground")
png_input.click(None, [], None, _js="detectImage")
add.click(None, [], None, _js="addPose")
png_input_area.change(estimate, [png_input_area], [jsonbox])
send_output.click(None, [], None, _js="sendImage")
reset_btn.click(None, [], None, _js="resetCanvas")
json_input.click(None, None, [width, height], _js="loadJSON")
json_output.click(None, None, None, _js="saveJSON")
return [(openpose_editor, "OpenPose Editor", "openpose_editor")]
script_callbacks.on_ui_tabs(on_ui_tabs)