|
import math |
|
from collections import namedtuple |
|
|
|
import torch |
|
|
|
from modules import prompt_parser, devices, sd_hijack |
|
from modules.shared import opts |
|
|
|
|
|
class PromptChunk: |
|
""" |
|
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt. |
|
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary. |
|
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token, |
|
so just 75 tokens from prompt. |
|
""" |
|
|
|
def __init__(self): |
|
self.tokens = [] |
|
self.multipliers = [] |
|
self.fixes = [] |
|
|
|
|
|
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding']) |
|
"""An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt |
|
chunk. Thos objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally |
|
are applied by sd_hijack.EmbeddingsWithFixes's forward function.""" |
|
|
|
|
|
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): |
|
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to |
|
have unlimited prompt length and assign weights to tokens in prompt. |
|
""" |
|
|
|
def __init__(self, wrapped, hijack): |
|
super().__init__() |
|
|
|
self.wrapped = wrapped |
|
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation, |
|
depending on model.""" |
|
|
|
self.hijack: sd_hijack.StableDiffusionModelHijack = hijack |
|
self.chunk_length = 75 |
|
|
|
def empty_chunk(self): |
|
"""creates an empty PromptChunk and returns it""" |
|
|
|
chunk = PromptChunk() |
|
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) |
|
chunk.multipliers = [1.0] * (self.chunk_length + 2) |
|
return chunk |
|
|
|
def get_target_prompt_token_count(self, token_count): |
|
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented""" |
|
|
|
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length |
|
|
|
def tokenize(self, texts): |
|
"""Converts a batch of texts into a batch of token ids""" |
|
|
|
raise NotImplementedError |
|
|
|
def encode_with_transformers(self, tokens): |
|
""" |
|
converts a batch of token ids (in python lists) into a single tensor with numeric respresentation of those tokens; |
|
All python lists with tokens are assumed to have same length, usually 77. |
|
if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on |
|
model - can be 768 and 1024. |
|
Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None). |
|
""" |
|
|
|
raise NotImplementedError |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
"""Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through |
|
transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned.""" |
|
|
|
raise NotImplementedError |
|
|
|
def tokenize_line(self, line): |
|
""" |
|
this transforms a single prompt into a list of PromptChunk objects - as many as needed to |
|
represent the prompt. |
|
Returns the list and the total number of tokens in the prompt. |
|
""" |
|
|
|
if opts.enable_emphasis: |
|
parsed = prompt_parser.parse_prompt_attention(line) |
|
else: |
|
parsed = [[line, 1.0]] |
|
|
|
tokenized = self.tokenize([text for text, _ in parsed]) |
|
|
|
chunks = [] |
|
chunk = PromptChunk() |
|
token_count = 0 |
|
last_comma = -1 |
|
|
|
def next_chunk(is_last=False): |
|
"""puts current chunk into the list of results and produces the next one - empty; |
|
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count""" |
|
nonlocal token_count |
|
nonlocal last_comma |
|
nonlocal chunk |
|
|
|
if is_last: |
|
token_count += len(chunk.tokens) |
|
else: |
|
token_count += self.chunk_length |
|
|
|
to_add = self.chunk_length - len(chunk.tokens) |
|
if to_add > 0: |
|
chunk.tokens += [self.id_end] * to_add |
|
chunk.multipliers += [1.0] * to_add |
|
|
|
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] |
|
chunk.multipliers = [1.0] + chunk.multipliers + [1.0] |
|
|
|
last_comma = -1 |
|
chunks.append(chunk) |
|
chunk = PromptChunk() |
|
|
|
for tokens, (text, weight) in zip(tokenized, parsed): |
|
if text == 'BREAK' and weight == -1: |
|
next_chunk() |
|
continue |
|
|
|
position = 0 |
|
while position < len(tokens): |
|
token = tokens[position] |
|
|
|
if token == self.comma_token: |
|
last_comma = len(chunk.tokens) |
|
|
|
|
|
|
|
elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack: |
|
break_location = last_comma + 1 |
|
|
|
reloc_tokens = chunk.tokens[break_location:] |
|
reloc_mults = chunk.multipliers[break_location:] |
|
|
|
chunk.tokens = chunk.tokens[:break_location] |
|
chunk.multipliers = chunk.multipliers[:break_location] |
|
|
|
next_chunk() |
|
chunk.tokens = reloc_tokens |
|
chunk.multipliers = reloc_mults |
|
|
|
if len(chunk.tokens) == self.chunk_length: |
|
next_chunk() |
|
|
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position) |
|
if embedding is None: |
|
chunk.tokens.append(token) |
|
chunk.multipliers.append(weight) |
|
position += 1 |
|
continue |
|
|
|
emb_len = int(embedding.vec.shape[0]) |
|
if len(chunk.tokens) + emb_len > self.chunk_length: |
|
next_chunk() |
|
|
|
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding)) |
|
|
|
chunk.tokens += [0] * emb_len |
|
chunk.multipliers += [weight] * emb_len |
|
position += embedding_length_in_tokens |
|
|
|
if len(chunk.tokens) > 0 or len(chunks) == 0: |
|
next_chunk(is_last=True) |
|
|
|
return chunks, token_count |
|
|
|
def process_texts(self, texts): |
|
""" |
|
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum |
|
length, in tokens, of all texts. |
|
""" |
|
|
|
token_count = 0 |
|
|
|
cache = {} |
|
batch_chunks = [] |
|
for line in texts: |
|
if line in cache: |
|
chunks = cache[line] |
|
else: |
|
chunks, current_token_count = self.tokenize_line(line) |
|
token_count = max(current_token_count, token_count) |
|
|
|
cache[line] = chunks |
|
|
|
batch_chunks.append(chunks) |
|
|
|
return batch_chunks, token_count |
|
|
|
def forward(self, texts): |
|
""" |
|
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. |
|
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will |
|
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024. |
|
An example shape returned by this function can be: (2, 77, 768). |
|
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet |
|
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" |
|
""" |
|
|
|
if opts.use_old_emphasis_implementation: |
|
import modules.sd_hijack_clip_old |
|
return modules.sd_hijack_clip_old.forward_old(self, texts) |
|
|
|
batch_chunks, token_count = self.process_texts(texts) |
|
|
|
used_embeddings = {} |
|
chunk_count = max([len(x) for x in batch_chunks]) |
|
|
|
zs = [] |
|
for i in range(chunk_count): |
|
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks] |
|
|
|
tokens = [x.tokens for x in batch_chunk] |
|
multipliers = [x.multipliers for x in batch_chunk] |
|
self.hijack.fixes = [x.fixes for x in batch_chunk] |
|
|
|
for fixes in self.hijack.fixes: |
|
for position, embedding in fixes: |
|
used_embeddings[embedding.name] = embedding |
|
|
|
z = self.process_tokens(tokens, multipliers) |
|
zs.append(z) |
|
|
|
if len(used_embeddings) > 0: |
|
embeddings_list = ", ".join([f'{name} [{embedding.checksum()}]' for name, embedding in used_embeddings.items()]) |
|
self.hijack.comments.append(f"Used embeddings: {embeddings_list}") |
|
|
|
return torch.hstack(zs) |
|
|
|
def process_tokens(self, remade_batch_tokens, batch_multipliers): |
|
""" |
|
sends one single prompt chunk to be encoded by transformers neural network. |
|
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually |
|
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens. |
|
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier |
|
corresponds to one token. |
|
""" |
|
tokens = torch.asarray(remade_batch_tokens).to(devices.device) |
|
|
|
|
|
if self.id_end != self.id_pad: |
|
for batch_pos in range(len(remade_batch_tokens)): |
|
index = remade_batch_tokens[batch_pos].index(self.id_end) |
|
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad |
|
|
|
z = self.encode_with_transformers(tokens) |
|
|
|
|
|
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device) |
|
original_mean = z.mean() |
|
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) |
|
new_mean = z.mean() |
|
z = z * (original_mean / new_mean) |
|
|
|
return z |
|
|
|
|
|
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): |
|
def __init__(self, wrapped, hijack): |
|
super().__init__(wrapped, hijack) |
|
self.tokenizer = wrapped.tokenizer |
|
|
|
vocab = self.tokenizer.get_vocab() |
|
|
|
self.comma_token = vocab.get(',</w>', None) |
|
|
|
self.token_mults = {} |
|
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] |
|
for text, ident in tokens_with_parens: |
|
mult = 1.0 |
|
for c in text: |
|
if c == '[': |
|
mult /= 1.1 |
|
if c == ']': |
|
mult *= 1.1 |
|
if c == '(': |
|
mult *= 1.1 |
|
if c == ')': |
|
mult /= 1.1 |
|
|
|
if mult != 1.0: |
|
self.token_mults[ident] = mult |
|
|
|
self.id_start = self.wrapped.tokenizer.bos_token_id |
|
self.id_end = self.wrapped.tokenizer.eos_token_id |
|
self.id_pad = self.id_end |
|
|
|
def tokenize(self, texts): |
|
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] |
|
|
|
return tokenized |
|
|
|
def encode_with_transformers(self, tokens): |
|
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) |
|
|
|
if opts.CLIP_stop_at_last_layers > 1: |
|
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] |
|
z = self.wrapped.transformer.text_model.final_layer_norm(z) |
|
else: |
|
z = outputs.last_hidden_state |
|
|
|
return z |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
embedding_layer = self.wrapped.transformer.text_model.embeddings |
|
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] |
|
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0) |
|
|
|
return embedded |
|
|