|
import contextlib |
|
import os |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from basicsr.utils.download_util import load_file_from_url |
|
from tqdm import tqdm |
|
|
|
from modules import modelloader, devices, script_callbacks, shared |
|
from modules.shared import cmd_opts, opts, state |
|
from swinir_model_arch import SwinIR as net |
|
from swinir_model_arch_v2 import Swin2SR as net2 |
|
from modules.upscaler import Upscaler, UpscalerData |
|
|
|
|
|
device_swinir = devices.get_device_for('swinir') |
|
|
|
|
|
class UpscalerSwinIR(Upscaler): |
|
def __init__(self, dirname): |
|
self.name = "SwinIR" |
|
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ |
|
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \ |
|
"-L_x4_GAN.pth " |
|
self.model_name = "SwinIR 4x" |
|
self.user_path = dirname |
|
super().__init__() |
|
scalers = [] |
|
model_files = self.find_models(ext_filter=[".pt", ".pth"]) |
|
for model in model_files: |
|
if "http" in model: |
|
name = self.model_name |
|
else: |
|
name = modelloader.friendly_name(model) |
|
model_data = UpscalerData(name, model, self) |
|
scalers.append(model_data) |
|
self.scalers = scalers |
|
|
|
def do_upscale(self, img, model_file): |
|
model = self.load_model(model_file) |
|
if model is None: |
|
return img |
|
model = model.to(device_swinir, dtype=devices.dtype) |
|
img = upscale(img, model) |
|
try: |
|
torch.cuda.empty_cache() |
|
except: |
|
pass |
|
return img |
|
|
|
def load_model(self, path, scale=4): |
|
if "http" in path: |
|
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth") |
|
filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True) |
|
else: |
|
filename = path |
|
if filename is None or not os.path.exists(filename): |
|
return None |
|
if filename.endswith(".v2.pth"): |
|
model = net2( |
|
upscale=scale, |
|
in_chans=3, |
|
img_size=64, |
|
window_size=8, |
|
img_range=1.0, |
|
depths=[6, 6, 6, 6, 6, 6], |
|
embed_dim=180, |
|
num_heads=[6, 6, 6, 6, 6, 6], |
|
mlp_ratio=2, |
|
upsampler="nearest+conv", |
|
resi_connection="1conv", |
|
) |
|
params = None |
|
else: |
|
model = net( |
|
upscale=scale, |
|
in_chans=3, |
|
img_size=64, |
|
window_size=8, |
|
img_range=1.0, |
|
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], |
|
embed_dim=240, |
|
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], |
|
mlp_ratio=2, |
|
upsampler="nearest+conv", |
|
resi_connection="3conv", |
|
) |
|
params = "params_ema" |
|
|
|
pretrained_model = torch.load(filename) |
|
if params is not None: |
|
model.load_state_dict(pretrained_model[params], strict=True) |
|
else: |
|
model.load_state_dict(pretrained_model, strict=True) |
|
return model |
|
|
|
|
|
def upscale( |
|
img, |
|
model, |
|
tile=None, |
|
tile_overlap=None, |
|
window_size=8, |
|
scale=4, |
|
): |
|
tile = tile or opts.SWIN_tile |
|
tile_overlap = tile_overlap or opts.SWIN_tile_overlap |
|
|
|
|
|
img = np.array(img) |
|
img = img[:, :, ::-1] |
|
img = np.moveaxis(img, 2, 0) / 255 |
|
img = torch.from_numpy(img).float() |
|
img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype) |
|
with torch.no_grad(), devices.autocast(): |
|
_, _, h_old, w_old = img.size() |
|
h_pad = (h_old // window_size + 1) * window_size - h_old |
|
w_pad = (w_old // window_size + 1) * window_size - w_old |
|
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] |
|
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] |
|
output = inference(img, model, tile, tile_overlap, window_size, scale) |
|
output = output[..., : h_old * scale, : w_old * scale] |
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
if output.ndim == 3: |
|
output = np.transpose( |
|
output[[2, 1, 0], :, :], (1, 2, 0) |
|
) |
|
output = (output * 255.0).round().astype(np.uint8) |
|
return Image.fromarray(output, "RGB") |
|
|
|
|
|
def inference(img, model, tile, tile_overlap, window_size, scale): |
|
|
|
b, c, h, w = img.size() |
|
tile = min(tile, h, w) |
|
assert tile % window_size == 0, "tile size should be a multiple of window_size" |
|
sf = scale |
|
|
|
stride = tile - tile_overlap |
|
h_idx_list = list(range(0, h - tile, stride)) + [h - tile] |
|
w_idx_list = list(range(0, w - tile, stride)) + [w - tile] |
|
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img) |
|
W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir) |
|
|
|
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: |
|
for h_idx in h_idx_list: |
|
if state.interrupted or state.skipped: |
|
break |
|
|
|
for w_idx in w_idx_list: |
|
if state.interrupted or state.skipped: |
|
break |
|
|
|
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] |
|
out_patch = model(in_patch) |
|
out_patch_mask = torch.ones_like(out_patch) |
|
|
|
E[ |
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf |
|
].add_(out_patch) |
|
W[ |
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf |
|
].add_(out_patch_mask) |
|
pbar.update(1) |
|
output = E.div_(W) |
|
|
|
return output |
|
|
|
|
|
def on_ui_settings(): |
|
import gradio as gr |
|
|
|
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling"))) |
|
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling"))) |
|
|
|
|
|
script_callbacks.on_ui_settings(on_ui_settings) |
|
|