Spaces:
Runtime error
Runtime error
Create 2.py
Browse files
2.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Tuple, Optional
|
3 |
+
import shutil
|
4 |
+
import os
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
+
import supervision as sv
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
from tqdm import tqdm
|
12 |
+
from utils.video import generate_unique_name, create_directory, delete_directory
|
13 |
+
from utils.florencegpu2 import load_florence_model, run_florence_inference, \
|
14 |
+
FLORENCE_DETAILED_CAPTION_TASK, \
|
15 |
+
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
16 |
+
from utils.modes import IMAGE_INFERENCE_MODES, IMAGE_OPEN_VOCABULARY_DETECTION_MODE, \
|
17 |
+
IMAGE_CAPTION_GROUNDING_MASKS_MODE, VIDEO_INFERENCE_MODES
|
18 |
+
from utils.sam import load_sam_image_model, run_sam_inference, load_sam_video_model
|
19 |
+
DEVICE = torch.device("cuda")
|
20 |
+
DEVICE = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())][-1]
|
21 |
+
|
22 |
+
# DEVICE = torch.device("cpu")
|
23 |
+
|
24 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
25 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
26 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
27 |
+
torch.backends.cudnn.allow_tf32 = True
|
28 |
+
|
29 |
+
|
30 |
+
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
31 |
+
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
32 |
+
SAM_VIDEO_MODEL = load_sam_video_model(device=DEVICE)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
texts = ['the table', 'all person','ball']
|
37 |
+
from PIL import Image
|
38 |
+
import supervision as sv
|
39 |
+
|
40 |
+
def detect_objects_in_image(image_input_path, texts):
|
41 |
+
# 加载图像
|
42 |
+
image_input = Image.open(image_input_path)
|
43 |
+
|
44 |
+
# 初始化检测列表
|
45 |
+
detections_list = []
|
46 |
+
|
47 |
+
# 对每个文本进行检测
|
48 |
+
for text in texts:
|
49 |
+
_, result = run_florence_inference(
|
50 |
+
model=FLORENCE_MODEL,
|
51 |
+
processor=FLORENCE_PROCESSOR,
|
52 |
+
device=DEVICE,
|
53 |
+
image=image_input,
|
54 |
+
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
55 |
+
text=text
|
56 |
+
)
|
57 |
+
|
58 |
+
# 从结果中构建监督检测对象
|
59 |
+
detections = sv.Detections.from_lmm(
|
60 |
+
lmm=sv.LMM.FLORENCE_2,
|
61 |
+
result=result,
|
62 |
+
resolution_wh=image_input.size
|
63 |
+
)
|
64 |
+
|
65 |
+
# 运行 SAM 推理
|
66 |
+
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
67 |
+
|
68 |
+
# 将检测结果添加到列表中
|
69 |
+
detections_list.append(detections)
|
70 |
+
|
71 |
+
# 合并所有检测结果
|
72 |
+
detections = sv.Detections.merge(detections_list)
|
73 |
+
|
74 |
+
# 再次运行 SAM 推理
|
75 |
+
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
76 |
+
|
77 |
+
return detections
|
78 |
+
# @title #合并遮罩加模糊merge_image_with_mask
|
79 |
+
import numpy as np
|
80 |
+
import cv2
|
81 |
+
import os
|
82 |
+
from PIL import Image, ImageFilter
|
83 |
+
|
84 |
+
def merge_image_with_mask(image_input_path, detections, output_folder):
|
85 |
+
# 创建输出文件夹
|
86 |
+
if not os.path.exists(output_folder):
|
87 |
+
os.makedirs(output_folder)
|
88 |
+
|
89 |
+
# 提取图片文件名
|
90 |
+
image_name = os.path.basename(image_input_path)
|
91 |
+
output_path = os.path.join(output_folder, image_name)
|
92 |
+
|
93 |
+
# 创建掩码文件夹
|
94 |
+
mask_folder = 'mask2'
|
95 |
+
if not os.path.exists(mask_folder):
|
96 |
+
os.makedirs(mask_folder)
|
97 |
+
|
98 |
+
# 合并掩码
|
99 |
+
combined_mask = np.zeros_like(detections.mask[0], dtype=np.uint8)
|
100 |
+
for mask in detections.mask:
|
101 |
+
combined_mask += mask
|
102 |
+
combined_mask = np.clip(combined_mask, 0, 255)
|
103 |
+
combined_mask = combined_mask.astype(np.uint8)
|
104 |
+
|
105 |
+
# 膨胀掩码
|
106 |
+
kernel = np.ones((6, 6), np.uint8)
|
107 |
+
dilated_mask = cv2.dilate(combined_mask, kernel, iterations=1)
|
108 |
+
|
109 |
+
# 保存膨胀后的掩码
|
110 |
+
#mask_path = os.path.join(mask_folder, 'test1.png')
|
111 |
+
#cv2.imwrite(mask_path, dilated_mask * 255)
|
112 |
+
|
113 |
+
# 读取原始图像
|
114 |
+
original_image = cv2.imread(image_input_path)
|
115 |
+
|
116 |
+
# 读取遮罩图片
|
117 |
+
#mask_image = cv2.imread(mask_path)
|
118 |
+
|
119 |
+
# 确保原始图片和遮罩图片尺寸一致
|
120 |
+
#assert original_image.shape == mask_image.shape, "The images must have the same dimensions."
|
121 |
+
|
122 |
+
# 使用掩膜从原始图片中提取部分区域
|
123 |
+
masked_image = cv2.bitwise_and(original_image, original_image, mask=dilated_mask)
|
124 |
+
# 将掩膜应用于原始图片
|
125 |
+
blurred_image = cv2.GaussianBlur(original_image, (21, 21), 500) # 使用较大的核大小进行模糊
|
126 |
+
# 将提取的部分区域叠加到模糊后的图片上
|
127 |
+
blurred_image = cv2.bitwise_and(blurred_image, blurred_image, mask=~dilated_mask)
|
128 |
+
# 将提取的部分区域叠加到模糊后的图片上
|
129 |
+
result = np.where(dilated_mask[:, :, None] > 0, masked_image, blurred_image)
|
130 |
+
|
131 |
+
# 保存合并后的图片
|
132 |
+
cv2.imwrite(output_path, result)
|
133 |
+
# @title #进度条批量处理文件夹process_images_in_folder(input_folder)
|
134 |
+
from tqdm import tqdm
|
135 |
+
import shutil
|
136 |
+
def process_images_in_folder(input_folder):
|
137 |
+
# 确保输出文件夹存在
|
138 |
+
output_folder = 'okframe2'
|
139 |
+
if not os.path.exists(output_folder):
|
140 |
+
os.makedirs(output_folder)
|
141 |
+
shutil.rmtree('okframe2')
|
142 |
+
output_folder = 'okframe2'
|
143 |
+
if not os.path.exists(output_folder):
|
144 |
+
os.makedirs(output_folder)
|
145 |
+
|
146 |
+
# 获取文件夹中的所有文件
|
147 |
+
files = [f for f in os.listdir(input_folder) if f.endswith('.jpg') or f.endswith('.png') or f.endswith('.jpeg')]
|
148 |
+
|
149 |
+
# 使用 tqdm 显示进度条
|
150 |
+
for filename in tqdm(files, desc="Processing Images"):
|
151 |
+
image_input_path = os.path.join(input_folder, filename)
|
152 |
+
|
153 |
+
# 检测对象
|
154 |
+
detections = detect_objects_in_image(
|
155 |
+
image_input_path=image_input_path,
|
156 |
+
texts=texts
|
157 |
+
)
|
158 |
+
|
159 |
+
# 合并图像
|
160 |
+
merge_image_with_mask(
|
161 |
+
image_input_path=image_input_path,
|
162 |
+
detections=detections,
|
163 |
+
output_folder=output_folder
|
164 |
+
)
|
165 |
+
|
166 |
+
# 使用示例
|
167 |
+
video_name = video_input_path.split('/')[-1].split('.')[0]
|
168 |
+
input_folder = 'frame2'
|
169 |
+
process_images_in_folder(input_folder)
|
170 |
+
|
171 |
+
|
172 |
+
|