test1 / classify_webcam.py
supArs's picture
Upload 66 files
4d3c01a verified
import sys
import os
import flask
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
import copy
import cv2
import random
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from re import I
from flask import Flask, render_template, request, redirect, url_for, flash, jsonify
from flask_cors import CORS, cross_origin
from flask import send_from_directory
import base64
from PIL import Image
from io import BytesIO
app = Flask(__name__)
cors = CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'
# Disable tensorflow compilation warnings
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#import tensorflow as tf
def predict(image_data):
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
max_score = 0.0
res = ''
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
if score > max_score:
max_score = score
res = human_string
return res, max_score
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("logs/trained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("logs/trained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
sess = tf.Session()
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
def imageRead (random_name):
c = 0
global sess
global softmax_tensor
#cap = cv2.VideoCapture(0)
res, score = '', 0.0
i = 0
mem = ''
consecutive = 0
sequence = ''
while True:
img = cv2.imread('temp_img/'+random_name)
img = cv2.flip(img, 1)
#x1, y1, x2, y2 = 200, 200, 600, 600
#img_cropped = img[y1:y2, x1:x2]
c += 1
image_data = cv2.imencode('.jpg', img)[1].tostring()
a = cv2.waitKey(1) # waits to see if `esc` is pressed
res_tmp, score = predict(image_data)
res = res_tmp
print(res)
return res;
#cv2.putText(img, '%s' % (res.upper()), (100,400), cv2.FONT_HERSHEY_SIMPLEX, 4, (255,255,255), 4)
#cv2.putText(img, '(score = %.5f)' % (float(score)), (100,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255))
#mem = res
#cv2.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 2)
#cv2.imshow("img", img)
#img_sequence = np.zeros((200,1200,3), np.uint8)
#cv2.putText(img_sequence, '%s' % (sequence.upper()), (30,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2)
#cv2.imshow('sequence', img_sequence)
#if a == 27: # when `esc` is pressed
# break
@app.route('/image', methods=['GET', 'POST'])
@cross_origin()
def image():
req = request.get_json()
random_name = "test" + '.jpg'
image_data = req['image_data'].split(',')[1]
im = Image.open(BytesIO(base64.b64decode(image_data)))
im.save('temp_img/'+random_name, 'JPEG')
imageData = imageRead(random_name)
return '{"status":1, "value": "'+imageData+'"}';
@app.route('/')
@cross_origin()
def homePage():
return render_template('index.html')
@app.route("/audio/<path:path>")
def static_dir(path):
return flask.send_file("templates/audio/" + path)
@app.route('/image-upload', methods=['GET', 'POST'])
@cross_origin()
def imageUpload():
req = request.get_json()
random_name = str( random.randint(1, 9999999) )+ '.jpg'
image_data = req['image_data'].split(',')[1]
im = Image.open(BytesIO(base64.b64decode(image_data)))
im.save('temp_img/'+random_name, 'JPEG')
imageData = imageRead(random_name)
return '{"status":1, "value": "'+imageData+'"}';
if __name__ == '__main__':
app.run(debug=True)
# Following line should... <-- This should work fine now
# cv2.destroyAllWindows()
# cv2.VideoCapture(0).release()