Spaces:
Runtime error
Runtime error
added model script
Browse files
mt5.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding:utf-8
|
2 |
+
"""
|
3 |
+
Filename: mt5.py
|
4 |
+
Author: @DvdNss
|
5 |
+
|
6 |
+
Created on 12/30/2021
|
7 |
+
"""
|
8 |
+
|
9 |
+
from typing import List
|
10 |
+
|
11 |
+
from pytorch_lightning import LightningModule
|
12 |
+
from transformers import MT5ForConditionalGeneration, AutoTokenizer
|
13 |
+
|
14 |
+
|
15 |
+
class MT5(LightningModule):
|
16 |
+
"""
|
17 |
+
Google MT5 transformer class.
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, model_name_or_path: str = None):
|
21 |
+
"""
|
22 |
+
Initialize module.
|
23 |
+
|
24 |
+
:param model_name_or_path: model name
|
25 |
+
"""
|
26 |
+
|
27 |
+
super().__init__()
|
28 |
+
|
29 |
+
# Load model and tokenizer
|
30 |
+
self.save_hyperparameters()
|
31 |
+
self.model = MT5ForConditionalGeneration.from_pretrained(
|
32 |
+
model_name_or_path) if model_name_or_path is not None else None
|
33 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
|
34 |
+
use_fast=True) if model_name_or_path is not None else None
|
35 |
+
|
36 |
+
def forward(self, **inputs):
|
37 |
+
"""
|
38 |
+
Forward inputs.
|
39 |
+
|
40 |
+
:param inputs: dictionary of inputs (input_ids, attention_mask, labels)
|
41 |
+
"""
|
42 |
+
|
43 |
+
return self.model(**inputs)
|
44 |
+
|
45 |
+
def qa(self, batch: List[dict], max_length: int = 512, **kwargs):
|
46 |
+
"""
|
47 |
+
Question answering prediction.
|
48 |
+
|
49 |
+
:param batch: batch of dict {question: q, context: c}
|
50 |
+
:param max_length: max length of output
|
51 |
+
"""
|
52 |
+
|
53 |
+
# Transform inputs
|
54 |
+
inputs = [f"question: {context['question']} context: {context['context']}" for context in batch]
|
55 |
+
|
56 |
+
# Predict
|
57 |
+
outputs = self.predict(inputs=inputs, max_length=max_length, **kwargs)
|
58 |
+
|
59 |
+
return outputs
|
60 |
+
|
61 |
+
def qg(self, batch: List[str] = None, max_length: int = 512, **kwargs):
|
62 |
+
"""
|
63 |
+
Question generation prediction.
|
64 |
+
|
65 |
+
:param batch: batch of context with highlighted elements
|
66 |
+
:param max_length: max length of output
|
67 |
+
"""
|
68 |
+
|
69 |
+
# Transform inputs
|
70 |
+
inputs = [f"generate: {context}" for context in batch]
|
71 |
+
|
72 |
+
# Predict
|
73 |
+
outputs = self.predict(inputs=inputs, max_length=max_length, **kwargs)
|
74 |
+
|
75 |
+
return outputs
|
76 |
+
|
77 |
+
def ae(self, batch: List[str], max_length: int = 512, **kwargs):
|
78 |
+
"""
|
79 |
+
Answer extraction prediction.
|
80 |
+
|
81 |
+
:param batch: list of context
|
82 |
+
:param max_length: max length of output
|
83 |
+
"""
|
84 |
+
|
85 |
+
# Transform inputs
|
86 |
+
inputs = [f"extract: {context}" for context in batch]
|
87 |
+
|
88 |
+
# Predict
|
89 |
+
outputs = self.predict(inputs=inputs, max_length=max_length, **kwargs)
|
90 |
+
|
91 |
+
return outputs
|
92 |
+
|
93 |
+
def multitask(self, batch: List[str], max_length: int = 512, **kwargs):
|
94 |
+
"""
|
95 |
+
Answer extraction + question generation + question answering.
|
96 |
+
|
97 |
+
:param batch: list of context
|
98 |
+
:param max_length: max length of outputs
|
99 |
+
"""
|
100 |
+
|
101 |
+
# Build output dict
|
102 |
+
dict_batch = {'context': [context for context in batch], 'answers': [], 'questions': [], 'answers_bis': []}
|
103 |
+
|
104 |
+
# Iterate over context
|
105 |
+
for context in batch:
|
106 |
+
answers = self.ae(batch=[context], max_length=max_length, **kwargs)[0]
|
107 |
+
answers = answers.split('<sep>')
|
108 |
+
answers = [ans.strip() for ans in answers if ans != ' ']
|
109 |
+
dict_batch['answers'].append(answers)
|
110 |
+
for_qg = [f"{context.replace(ans, f'<hl> {ans} <hl> ')}" for ans in answers]
|
111 |
+
questions = self.qg(batch=for_qg, max_length=max_length, **kwargs)
|
112 |
+
dict_batch['questions'].append(questions)
|
113 |
+
new_answers = self.qa([{'context': context, 'question': question} for question in questions],
|
114 |
+
max_length=max_length, **kwargs)
|
115 |
+
dict_batch['answers_bis'].append(new_answers)
|
116 |
+
return dict_batch
|
117 |
+
|
118 |
+
def predict(self, inputs, max_length, **kwargs):
|
119 |
+
"""
|
120 |
+
Inference processing.
|
121 |
+
|
122 |
+
:param inputs: list of inputs
|
123 |
+
:param max_length: max_length of outputs
|
124 |
+
"""
|
125 |
+
|
126 |
+
# Tokenize inputs
|
127 |
+
inputs = self.tokenizer(inputs, max_length=max_length, padding='max_length', truncation=True,
|
128 |
+
return_tensors="pt")
|
129 |
+
|
130 |
+
# Retrieve input_ids and attention_mask
|
131 |
+
input_ids = inputs.input_ids.to(self.model.device)
|
132 |
+
attention_mask = inputs.attention_mask.to(self.model.device)
|
133 |
+
|
134 |
+
# Predict
|
135 |
+
outputs = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=max_length,
|
136 |
+
**kwargs)
|
137 |
+
|
138 |
+
# Decode outputs
|
139 |
+
predictions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
140 |
+
|
141 |
+
return predictions
|