Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import numpy as np | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class BBoxTransform(nn.Module): | |
def __init__(self, mean=None, std=None): | |
super(BBoxTransform, self).__init__() | |
if mean is None: | |
if torch.cuda.is_available(): | |
self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32)).cuda() | |
else: | |
self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32)) | |
else: | |
self.mean = mean | |
if std is None: | |
if torch.cuda.is_available(): | |
self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32)).cuda() | |
else: | |
self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32)) | |
else: | |
self.std = std | |
def forward(self, boxes, deltas): | |
widths = boxes[:, :, 2] - boxes[:, :, 0] | |
heights = boxes[:, :, 3] - boxes[:, :, 1] | |
ctr_x = boxes[:, :, 0] + 0.5 * widths | |
ctr_y = boxes[:, :, 1] + 0.5 * heights | |
dx = deltas[:, :, 0] * self.std[0] + self.mean[0] | |
dy = deltas[:, :, 1] * self.std[1] + self.mean[1] | |
dw = deltas[:, :, 2] * self.std[2] + self.mean[2] | |
dh = deltas[:, :, 3] * self.std[3] + self.mean[3] | |
pred_ctr_x = ctr_x + dx * widths | |
pred_ctr_y = ctr_y + dy * heights | |
pred_w = torch.exp(dw) * widths | |
pred_h = torch.exp(dh) * heights | |
pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w | |
pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h | |
pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w | |
pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h | |
pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2) | |
return pred_boxes | |
class ClipBoxes(nn.Module): | |
def __init__(self, width=None, height=None): | |
super(ClipBoxes, self).__init__() | |
def forward(self, boxes, img): | |
batch_size, num_channels, height, width = img.shape | |
boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0) | |
boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0) | |
boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width) | |
boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height) | |
return boxes | |