Spaces:
Sleeping
Sleeping
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| import itertools | |
| from glob import glob | |
| from math import ceil | |
| from pathlib import Path | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| from tqdm import tqdm | |
| from ultralytics.data.utils import exif_size, img2label_paths | |
| from ultralytics.utils.checks import check_requirements | |
| def bbox_iof(polygon1, bbox2, eps=1e-6): | |
| """ | |
| Calculate Intersection over Foreground (IoF) between polygons and bounding boxes. | |
| Args: | |
| polygon1 (np.ndarray): Polygon coordinates, shape (n, 8). | |
| bbox2 (np.ndarray): Bounding boxes, shape (n, 4). | |
| eps (float, optional): Small value to prevent division by zero. Defaults to 1e-6. | |
| Returns: | |
| (np.ndarray): IoF scores, shape (n, 1) or (n, m) if bbox2 is (m, 4). | |
| Note: | |
| Polygon format: [x1, y1, x2, y2, x3, y3, x4, y4]. | |
| Bounding box format: [x_min, y_min, x_max, y_max]. | |
| """ | |
| check_requirements("shapely") | |
| from shapely.geometry import Polygon | |
| polygon1 = polygon1.reshape(-1, 4, 2) | |
| lt_point = np.min(polygon1, axis=-2) # left-top | |
| rb_point = np.max(polygon1, axis=-2) # right-bottom | |
| bbox1 = np.concatenate([lt_point, rb_point], axis=-1) | |
| lt = np.maximum(bbox1[:, None, :2], bbox2[..., :2]) | |
| rb = np.minimum(bbox1[:, None, 2:], bbox2[..., 2:]) | |
| wh = np.clip(rb - lt, 0, np.inf) | |
| h_overlaps = wh[..., 0] * wh[..., 1] | |
| left, top, right, bottom = (bbox2[..., i] for i in range(4)) | |
| polygon2 = np.stack([left, top, right, top, right, bottom, left, bottom], axis=-1).reshape(-1, 4, 2) | |
| sg_polys1 = [Polygon(p) for p in polygon1] | |
| sg_polys2 = [Polygon(p) for p in polygon2] | |
| overlaps = np.zeros(h_overlaps.shape) | |
| for p in zip(*np.nonzero(h_overlaps)): | |
| overlaps[p] = sg_polys1[p[0]].intersection(sg_polys2[p[-1]]).area | |
| unions = np.array([p.area for p in sg_polys1], dtype=np.float32) | |
| unions = unions[..., None] | |
| unions = np.clip(unions, eps, np.inf) | |
| outputs = overlaps / unions | |
| if outputs.ndim == 1: | |
| outputs = outputs[..., None] | |
| return outputs | |
| def load_yolo_dota(data_root, split="train"): | |
| """ | |
| Load DOTA dataset. | |
| Args: | |
| data_root (str): Data root. | |
| split (str): The split data set, could be `train` or `val`. | |
| Notes: | |
| The directory structure assumed for the DOTA dataset: | |
| - data_root | |
| - images | |
| - train | |
| - val | |
| - labels | |
| - train | |
| - val | |
| """ | |
| assert split in {"train", "val"}, f"Split must be 'train' or 'val', not {split}." | |
| im_dir = Path(data_root) / "images" / split | |
| assert im_dir.exists(), f"Can't find {im_dir}, please check your data root." | |
| im_files = glob(str(Path(data_root) / "images" / split / "*")) | |
| lb_files = img2label_paths(im_files) | |
| annos = [] | |
| for im_file, lb_file in zip(im_files, lb_files): | |
| w, h = exif_size(Image.open(im_file)) | |
| with open(lb_file) as f: | |
| lb = [x.split() for x in f.read().strip().splitlines() if len(x)] | |
| lb = np.array(lb, dtype=np.float32) | |
| annos.append(dict(ori_size=(h, w), label=lb, filepath=im_file)) | |
| return annos | |
| def get_windows(im_size, crop_sizes=(1024,), gaps=(200,), im_rate_thr=0.6, eps=0.01): | |
| """ | |
| Get the coordinates of windows. | |
| Args: | |
| im_size (tuple): Original image size, (h, w). | |
| crop_sizes (List(int)): Crop size of windows. | |
| gaps (List(int)): Gap between crops. | |
| im_rate_thr (float): Threshold of windows areas divided by image ares. | |
| eps (float): Epsilon value for math operations. | |
| """ | |
| h, w = im_size | |
| windows = [] | |
| for crop_size, gap in zip(crop_sizes, gaps): | |
| assert crop_size > gap, f"invalid crop_size gap pair [{crop_size} {gap}]" | |
| step = crop_size - gap | |
| xn = 1 if w <= crop_size else ceil((w - crop_size) / step + 1) | |
| xs = [step * i for i in range(xn)] | |
| if len(xs) > 1 and xs[-1] + crop_size > w: | |
| xs[-1] = w - crop_size | |
| yn = 1 if h <= crop_size else ceil((h - crop_size) / step + 1) | |
| ys = [step * i for i in range(yn)] | |
| if len(ys) > 1 and ys[-1] + crop_size > h: | |
| ys[-1] = h - crop_size | |
| start = np.array(list(itertools.product(xs, ys)), dtype=np.int64) | |
| stop = start + crop_size | |
| windows.append(np.concatenate([start, stop], axis=1)) | |
| windows = np.concatenate(windows, axis=0) | |
| im_in_wins = windows.copy() | |
| im_in_wins[:, 0::2] = np.clip(im_in_wins[:, 0::2], 0, w) | |
| im_in_wins[:, 1::2] = np.clip(im_in_wins[:, 1::2], 0, h) | |
| im_areas = (im_in_wins[:, 2] - im_in_wins[:, 0]) * (im_in_wins[:, 3] - im_in_wins[:, 1]) | |
| win_areas = (windows[:, 2] - windows[:, 0]) * (windows[:, 3] - windows[:, 1]) | |
| im_rates = im_areas / win_areas | |
| if not (im_rates > im_rate_thr).any(): | |
| max_rate = im_rates.max() | |
| im_rates[abs(im_rates - max_rate) < eps] = 1 | |
| return windows[im_rates > im_rate_thr] | |
| def get_window_obj(anno, windows, iof_thr=0.7): | |
| """Get objects for each window.""" | |
| h, w = anno["ori_size"] | |
| label = anno["label"] | |
| if len(label): | |
| label[:, 1::2] *= w | |
| label[:, 2::2] *= h | |
| iofs = bbox_iof(label[:, 1:], windows) | |
| # Unnormalized and misaligned coordinates | |
| return [(label[iofs[:, i] >= iof_thr]) for i in range(len(windows))] # window_anns | |
| else: | |
| return [np.zeros((0, 9), dtype=np.float32) for _ in range(len(windows))] # window_anns | |
| def crop_and_save(anno, windows, window_objs, im_dir, lb_dir, allow_background_images=True): | |
| """ | |
| Crop images and save new labels. | |
| Args: | |
| anno (dict): Annotation dict, including `filepath`, `label`, `ori_size` as its keys. | |
| windows (list): A list of windows coordinates. | |
| window_objs (list): A list of labels inside each window. | |
| im_dir (str): The output directory path of images. | |
| lb_dir (str): The output directory path of labels. | |
| allow_background_images (bool): Whether to include background images without labels. | |
| Notes: | |
| The directory structure assumed for the DOTA dataset: | |
| - data_root | |
| - images | |
| - train | |
| - val | |
| - labels | |
| - train | |
| - val | |
| """ | |
| im = cv2.imread(anno["filepath"]) | |
| name = Path(anno["filepath"]).stem | |
| for i, window in enumerate(windows): | |
| x_start, y_start, x_stop, y_stop = window.tolist() | |
| new_name = f"{name}__{x_stop - x_start}__{x_start}___{y_start}" | |
| patch_im = im[y_start:y_stop, x_start:x_stop] | |
| ph, pw = patch_im.shape[:2] | |
| label = window_objs[i] | |
| if len(label) or allow_background_images: | |
| cv2.imwrite(str(Path(im_dir) / f"{new_name}.jpg"), patch_im) | |
| if len(label): | |
| label[:, 1::2] -= x_start | |
| label[:, 2::2] -= y_start | |
| label[:, 1::2] /= pw | |
| label[:, 2::2] /= ph | |
| with open(Path(lb_dir) / f"{new_name}.txt", "w") as f: | |
| for lb in label: | |
| formatted_coords = [f"{coord:.6g}" for coord in lb[1:]] | |
| f.write(f"{int(lb[0])} {' '.join(formatted_coords)}\n") | |
| def split_images_and_labels(data_root, save_dir, split="train", crop_sizes=(1024,), gaps=(200,)): | |
| """ | |
| Split both images and labels. | |
| Notes: | |
| The directory structure assumed for the DOTA dataset: | |
| - data_root | |
| - images | |
| - split | |
| - labels | |
| - split | |
| and the output directory structure is: | |
| - save_dir | |
| - images | |
| - split | |
| - labels | |
| - split | |
| """ | |
| im_dir = Path(save_dir) / "images" / split | |
| im_dir.mkdir(parents=True, exist_ok=True) | |
| lb_dir = Path(save_dir) / "labels" / split | |
| lb_dir.mkdir(parents=True, exist_ok=True) | |
| annos = load_yolo_dota(data_root, split=split) | |
| for anno in tqdm(annos, total=len(annos), desc=split): | |
| windows = get_windows(anno["ori_size"], crop_sizes, gaps) | |
| window_objs = get_window_obj(anno, windows) | |
| crop_and_save(anno, windows, window_objs, str(im_dir), str(lb_dir)) | |
| def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=(1.0,)): | |
| """ | |
| Split train and val set of DOTA. | |
| Notes: | |
| The directory structure assumed for the DOTA dataset: | |
| - data_root | |
| - images | |
| - train | |
| - val | |
| - labels | |
| - train | |
| - val | |
| and the output directory structure is: | |
| - save_dir | |
| - images | |
| - train | |
| - val | |
| - labels | |
| - train | |
| - val | |
| """ | |
| crop_sizes, gaps = [], [] | |
| for r in rates: | |
| crop_sizes.append(int(crop_size / r)) | |
| gaps.append(int(gap / r)) | |
| for split in ["train", "val"]: | |
| split_images_and_labels(data_root, save_dir, split, crop_sizes, gaps) | |
| def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=(1.0,)): | |
| """ | |
| Split test set of DOTA, labels are not included within this set. | |
| Notes: | |
| The directory structure assumed for the DOTA dataset: | |
| - data_root | |
| - images | |
| - test | |
| and the output directory structure is: | |
| - save_dir | |
| - images | |
| - test | |
| """ | |
| crop_sizes, gaps = [], [] | |
| for r in rates: | |
| crop_sizes.append(int(crop_size / r)) | |
| gaps.append(int(gap / r)) | |
| save_dir = Path(save_dir) / "images" / "test" | |
| save_dir.mkdir(parents=True, exist_ok=True) | |
| im_dir = Path(data_root) / "images" / "test" | |
| assert im_dir.exists(), f"Can't find {im_dir}, please check your data root." | |
| im_files = glob(str(im_dir / "*")) | |
| for im_file in tqdm(im_files, total=len(im_files), desc="test"): | |
| w, h = exif_size(Image.open(im_file)) | |
| windows = get_windows((h, w), crop_sizes=crop_sizes, gaps=gaps) | |
| im = cv2.imread(im_file) | |
| name = Path(im_file).stem | |
| for window in windows: | |
| x_start, y_start, x_stop, y_stop = window.tolist() | |
| new_name = f"{name}__{x_stop - x_start}__{x_start}___{y_start}" | |
| patch_im = im[y_start:y_stop, x_start:x_stop] | |
| cv2.imwrite(str(save_dir / f"{new_name}.jpg"), patch_im) | |
| if __name__ == "__main__": | |
| split_trainval(data_root="DOTAv2", save_dir="DOTAv2-split") | |
| split_test(data_root="DOTAv2", save_dir="DOTAv2-split") | |