Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| import numpy as np | |
| from ..utils import LOGGER | |
| from ..utils.ops import xywh2ltwh | |
| from .basetrack import BaseTrack, TrackState | |
| from .utils import matching | |
| from .utils.kalman_filter import KalmanFilterXYAH | |
| class STrack(BaseTrack): | |
| """ | |
| Single object tracking representation that uses Kalman filtering for state estimation. | |
| This class is responsible for storing all the information regarding individual tracklets and performs state updates | |
| and predictions based on Kalman filter. | |
| Attributes: | |
| shared_kalman (KalmanFilterXYAH): Shared Kalman filter that is used across all STrack instances for prediction. | |
| _tlwh (np.ndarray): Private attribute to store top-left corner coordinates and width and height of bounding box. | |
| kalman_filter (KalmanFilterXYAH): Instance of Kalman filter used for this particular object track. | |
| mean (np.ndarray): Mean state estimate vector. | |
| covariance (np.ndarray): Covariance of state estimate. | |
| is_activated (bool): Boolean flag indicating if the track has been activated. | |
| score (float): Confidence score of the track. | |
| tracklet_len (int): Length of the tracklet. | |
| cls (Any): Class label for the object. | |
| idx (int): Index or identifier for the object. | |
| frame_id (int): Current frame ID. | |
| start_frame (int): Frame where the object was first detected. | |
| Methods: | |
| predict(): Predict the next state of the object using Kalman filter. | |
| multi_predict(stracks): Predict the next states for multiple tracks. | |
| multi_gmc(stracks, H): Update multiple track states using a homography matrix. | |
| activate(kalman_filter, frame_id): Activate a new tracklet. | |
| re_activate(new_track, frame_id, new_id): Reactivate a previously lost tracklet. | |
| update(new_track, frame_id): Update the state of a matched track. | |
| convert_coords(tlwh): Convert bounding box to x-y-aspect-height format. | |
| tlwh_to_xyah(tlwh): Convert tlwh bounding box to xyah format. | |
| Examples: | |
| Initialize and activate a new track | |
| >>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person") | |
| >>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1) | |
| """ | |
| shared_kalman = KalmanFilterXYAH() | |
| def __init__(self, xywh, score, cls): | |
| """ | |
| Initialize a new STrack instance. | |
| Args: | |
| xywh (List[float]): Bounding box coordinates and dimensions in the format (x, y, w, h, [a], idx), where | |
| (x, y) is the center, (w, h) are width and height, [a] is optional aspect ratio, and idx is the id. | |
| score (float): Confidence score of the detection. | |
| cls (Any): Class label for the detected object. | |
| Examples: | |
| >>> xywh = [100.0, 150.0, 50.0, 75.0, 1] | |
| >>> score = 0.9 | |
| >>> cls = "person" | |
| >>> track = STrack(xywh, score, cls) | |
| """ | |
| super().__init__() | |
| # xywh+idx or xywha+idx | |
| assert len(xywh) in {5, 6}, f"expected 5 or 6 values but got {len(xywh)}" | |
| self._tlwh = np.asarray(xywh2ltwh(xywh[:4]), dtype=np.float32) | |
| self.kalman_filter = None | |
| self.mean, self.covariance = None, None | |
| self.is_activated = False | |
| self.score = score | |
| self.tracklet_len = 0 | |
| self.cls = cls | |
| self.idx = xywh[-1] | |
| self.angle = xywh[4] if len(xywh) == 6 else None | |
| def predict(self): | |
| """Predicts the next state (mean and covariance) of the object using the Kalman filter.""" | |
| mean_state = self.mean.copy() | |
| if self.state != TrackState.Tracked: | |
| mean_state[7] = 0 | |
| self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) | |
| def multi_predict(stracks): | |
| """Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances.""" | |
| if len(stracks) <= 0: | |
| return | |
| multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
| multi_covariance = np.asarray([st.covariance for st in stracks]) | |
| for i, st in enumerate(stracks): | |
| if st.state != TrackState.Tracked: | |
| multi_mean[i][7] = 0 | |
| multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance) | |
| for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
| stracks[i].mean = mean | |
| stracks[i].covariance = cov | |
| def multi_gmc(stracks, H=np.eye(2, 3)): | |
| """Update state tracks positions and covariances using a homography matrix for multiple tracks.""" | |
| if len(stracks) > 0: | |
| multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
| multi_covariance = np.asarray([st.covariance for st in stracks]) | |
| R = H[:2, :2] | |
| R8x8 = np.kron(np.eye(4, dtype=float), R) | |
| t = H[:2, 2] | |
| for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
| mean = R8x8.dot(mean) | |
| mean[:2] += t | |
| cov = R8x8.dot(cov).dot(R8x8.transpose()) | |
| stracks[i].mean = mean | |
| stracks[i].covariance = cov | |
| def activate(self, kalman_filter, frame_id): | |
| """Activate a new tracklet using the provided Kalman filter and initialize its state and covariance.""" | |
| self.kalman_filter = kalman_filter | |
| self.track_id = self.next_id() | |
| self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh)) | |
| self.tracklet_len = 0 | |
| self.state = TrackState.Tracked | |
| if frame_id == 1: | |
| self.is_activated = True | |
| self.frame_id = frame_id | |
| self.start_frame = frame_id | |
| def re_activate(self, new_track, frame_id, new_id=False): | |
| """Reactivates a previously lost track using new detection data and updates its state and attributes.""" | |
| self.mean, self.covariance = self.kalman_filter.update( | |
| self.mean, self.covariance, self.convert_coords(new_track.tlwh) | |
| ) | |
| self.tracklet_len = 0 | |
| self.state = TrackState.Tracked | |
| self.is_activated = True | |
| self.frame_id = frame_id | |
| if new_id: | |
| self.track_id = self.next_id() | |
| self.score = new_track.score | |
| self.cls = new_track.cls | |
| self.angle = new_track.angle | |
| self.idx = new_track.idx | |
| def update(self, new_track, frame_id): | |
| """ | |
| Update the state of a matched track. | |
| Args: | |
| new_track (STrack): The new track containing updated information. | |
| frame_id (int): The ID of the current frame. | |
| Examples: | |
| Update the state of a track with new detection information | |
| >>> track = STrack([100, 200, 50, 80, 0.9, 1]) | |
| >>> new_track = STrack([105, 205, 55, 85, 0.95, 1]) | |
| >>> track.update(new_track, 2) | |
| """ | |
| self.frame_id = frame_id | |
| self.tracklet_len += 1 | |
| new_tlwh = new_track.tlwh | |
| self.mean, self.covariance = self.kalman_filter.update( | |
| self.mean, self.covariance, self.convert_coords(new_tlwh) | |
| ) | |
| self.state = TrackState.Tracked | |
| self.is_activated = True | |
| self.score = new_track.score | |
| self.cls = new_track.cls | |
| self.angle = new_track.angle | |
| self.idx = new_track.idx | |
| def convert_coords(self, tlwh): | |
| """Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent.""" | |
| return self.tlwh_to_xyah(tlwh) | |
| def tlwh(self): | |
| """Returns the bounding box in top-left-width-height format from the current state estimate.""" | |
| if self.mean is None: | |
| return self._tlwh.copy() | |
| ret = self.mean[:4].copy() | |
| ret[2] *= ret[3] | |
| ret[:2] -= ret[2:] / 2 | |
| return ret | |
| def xyxy(self): | |
| """Converts bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format.""" | |
| ret = self.tlwh.copy() | |
| ret[2:] += ret[:2] | |
| return ret | |
| def tlwh_to_xyah(tlwh): | |
| """Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format.""" | |
| ret = np.asarray(tlwh).copy() | |
| ret[:2] += ret[2:] / 2 | |
| ret[2] /= ret[3] | |
| return ret | |
| def xywh(self): | |
| """Returns the current position of the bounding box in (center x, center y, width, height) format.""" | |
| ret = np.asarray(self.tlwh).copy() | |
| ret[:2] += ret[2:] / 2 | |
| return ret | |
| def xywha(self): | |
| """Returns position in (center x, center y, width, height, angle) format, warning if angle is missing.""" | |
| if self.angle is None: | |
| LOGGER.warning("WARNING ⚠️ `angle` attr not found, returning `xywh` instead.") | |
| return self.xywh | |
| return np.concatenate([self.xywh, self.angle[None]]) | |
| def result(self): | |
| """Returns the current tracking results in the appropriate bounding box format.""" | |
| coords = self.xyxy if self.angle is None else self.xywha | |
| return coords.tolist() + [self.track_id, self.score, self.cls, self.idx] | |
| def __repr__(self): | |
| """Returns a string representation of the STrack object including start frame, end frame, and track ID.""" | |
| return f"OT_{self.track_id}_({self.start_frame}-{self.end_frame})" | |
| class BYTETracker: | |
| """ | |
| BYTETracker: A tracking algorithm built on top of YOLOv8 for object detection and tracking. | |
| Responsible for initializing, updating, and managing the tracks for detected objects in a video sequence. | |
| It maintains the state of tracked, lost, and removed tracks over frames, utilizes Kalman filtering for predicting | |
| the new object locations, and performs data association. | |
| Attributes: | |
| tracked_stracks (List[STrack]): List of successfully activated tracks. | |
| lost_stracks (List[STrack]): List of lost tracks. | |
| removed_stracks (List[STrack]): List of removed tracks. | |
| frame_id (int): The current frame ID. | |
| args (Namespace): Command-line arguments. | |
| max_time_lost (int): The maximum frames for a track to be considered as 'lost'. | |
| kalman_filter (KalmanFilterXYAH): Kalman Filter object. | |
| Methods: | |
| update(results, img=None): Updates object tracker with new detections. | |
| get_kalmanfilter(): Returns a Kalman filter object for tracking bounding boxes. | |
| init_track(dets, scores, cls, img=None): Initialize object tracking with detections. | |
| get_dists(tracks, detections): Calculates the distance between tracks and detections. | |
| multi_predict(tracks): Predicts the location of tracks. | |
| reset_id(): Resets the ID counter of STrack. | |
| joint_stracks(tlista, tlistb): Combines two lists of stracks. | |
| sub_stracks(tlista, tlistb): Filters out the stracks present in the second list from the first list. | |
| remove_duplicate_stracks(stracksa, stracksb): Removes duplicate stracks based on IoU. | |
| Examples: | |
| Initialize BYTETracker and update with detection results | |
| >>> tracker = BYTETracker(args, frame_rate=30) | |
| >>> results = yolo_model.detect(image) | |
| >>> tracked_objects = tracker.update(results) | |
| """ | |
| def __init__(self, args, frame_rate=30): | |
| """ | |
| Initialize a BYTETracker instance for object tracking. | |
| Args: | |
| args (Namespace): Command-line arguments containing tracking parameters. | |
| frame_rate (int): Frame rate of the video sequence. | |
| Examples: | |
| Initialize BYTETracker with command-line arguments and a frame rate of 30 | |
| >>> args = Namespace(track_buffer=30) | |
| >>> tracker = BYTETracker(args, frame_rate=30) | |
| """ | |
| self.tracked_stracks = [] # type: list[STrack] | |
| self.lost_stracks = [] # type: list[STrack] | |
| self.removed_stracks = [] # type: list[STrack] | |
| self.frame_id = 0 | |
| self.args = args | |
| self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer) | |
| self.kalman_filter = self.get_kalmanfilter() | |
| self.reset_id() | |
| def update(self, results, img=None): | |
| """Updates the tracker with new detections and returns the current list of tracked objects.""" | |
| self.frame_id += 1 | |
| activated_stracks = [] | |
| refind_stracks = [] | |
| lost_stracks = [] | |
| removed_stracks = [] | |
| scores = results.conf | |
| bboxes = results.xywhr if hasattr(results, "xywhr") else results.xywh | |
| # Add index | |
| bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1) | |
| cls = results.cls | |
| remain_inds = scores >= self.args.track_high_thresh | |
| inds_low = scores > self.args.track_low_thresh | |
| inds_high = scores < self.args.track_high_thresh | |
| inds_second = inds_low & inds_high | |
| dets_second = bboxes[inds_second] | |
| dets = bboxes[remain_inds] | |
| scores_keep = scores[remain_inds] | |
| scores_second = scores[inds_second] | |
| cls_keep = cls[remain_inds] | |
| cls_second = cls[inds_second] | |
| detections = self.init_track(dets, scores_keep, cls_keep, img) | |
| # Add newly detected tracklets to tracked_stracks | |
| unconfirmed = [] | |
| tracked_stracks = [] # type: list[STrack] | |
| for track in self.tracked_stracks: | |
| if not track.is_activated: | |
| unconfirmed.append(track) | |
| else: | |
| tracked_stracks.append(track) | |
| # Step 2: First association, with high score detection boxes | |
| strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks) | |
| # Predict the current location with KF | |
| self.multi_predict(strack_pool) | |
| if hasattr(self, "gmc") and img is not None: | |
| warp = self.gmc.apply(img, dets) | |
| STrack.multi_gmc(strack_pool, warp) | |
| STrack.multi_gmc(unconfirmed, warp) | |
| dists = self.get_dists(strack_pool, detections) | |
| matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh) | |
| for itracked, idet in matches: | |
| track = strack_pool[itracked] | |
| det = detections[idet] | |
| if track.state == TrackState.Tracked: | |
| track.update(det, self.frame_id) | |
| activated_stracks.append(track) | |
| else: | |
| track.re_activate(det, self.frame_id, new_id=False) | |
| refind_stracks.append(track) | |
| # Step 3: Second association, with low score detection boxes association the untrack to the low score detections | |
| detections_second = self.init_track(dets_second, scores_second, cls_second, img) | |
| r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] | |
| # TODO | |
| dists = matching.iou_distance(r_tracked_stracks, detections_second) | |
| matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5) | |
| for itracked, idet in matches: | |
| track = r_tracked_stracks[itracked] | |
| det = detections_second[idet] | |
| if track.state == TrackState.Tracked: | |
| track.update(det, self.frame_id) | |
| activated_stracks.append(track) | |
| else: | |
| track.re_activate(det, self.frame_id, new_id=False) | |
| refind_stracks.append(track) | |
| for it in u_track: | |
| track = r_tracked_stracks[it] | |
| if track.state != TrackState.Lost: | |
| track.mark_lost() | |
| lost_stracks.append(track) | |
| # Deal with unconfirmed tracks, usually tracks with only one beginning frame | |
| detections = [detections[i] for i in u_detection] | |
| dists = self.get_dists(unconfirmed, detections) | |
| matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) | |
| for itracked, idet in matches: | |
| unconfirmed[itracked].update(detections[idet], self.frame_id) | |
| activated_stracks.append(unconfirmed[itracked]) | |
| for it in u_unconfirmed: | |
| track = unconfirmed[it] | |
| track.mark_removed() | |
| removed_stracks.append(track) | |
| # Step 4: Init new stracks | |
| for inew in u_detection: | |
| track = detections[inew] | |
| if track.score < self.args.new_track_thresh: | |
| continue | |
| track.activate(self.kalman_filter, self.frame_id) | |
| activated_stracks.append(track) | |
| # Step 5: Update state | |
| for track in self.lost_stracks: | |
| if self.frame_id - track.end_frame > self.max_time_lost: | |
| track.mark_removed() | |
| removed_stracks.append(track) | |
| self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked] | |
| self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks) | |
| self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks) | |
| self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks) | |
| self.lost_stracks.extend(lost_stracks) | |
| self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks) | |
| self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) | |
| self.removed_stracks.extend(removed_stracks) | |
| if len(self.removed_stracks) > 1000: | |
| self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum | |
| return np.asarray([x.result for x in self.tracked_stracks if x.is_activated], dtype=np.float32) | |
| def get_kalmanfilter(self): | |
| """Returns a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH.""" | |
| return KalmanFilterXYAH() | |
| def init_track(self, dets, scores, cls, img=None): | |
| """Initializes object tracking with given detections, scores, and class labels using the STrack algorithm.""" | |
| return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections | |
| def get_dists(self, tracks, detections): | |
| """Calculates the distance between tracks and detections using IoU and optionally fuses scores.""" | |
| dists = matching.iou_distance(tracks, detections) | |
| if self.args.fuse_score: | |
| dists = matching.fuse_score(dists, detections) | |
| return dists | |
| def multi_predict(self, tracks): | |
| """Predict the next states for multiple tracks using Kalman filter.""" | |
| STrack.multi_predict(tracks) | |
| def reset_id(): | |
| """Resets the ID counter for STrack instances to ensure unique track IDs across tracking sessions.""" | |
| STrack.reset_id() | |
| def reset(self): | |
| """Resets the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter.""" | |
| self.tracked_stracks = [] # type: list[STrack] | |
| self.lost_stracks = [] # type: list[STrack] | |
| self.removed_stracks = [] # type: list[STrack] | |
| self.frame_id = 0 | |
| self.kalman_filter = self.get_kalmanfilter() | |
| self.reset_id() | |
| def joint_stracks(tlista, tlistb): | |
| """Combines two lists of STrack objects into a single list, ensuring no duplicates based on track IDs.""" | |
| exists = {} | |
| res = [] | |
| for t in tlista: | |
| exists[t.track_id] = 1 | |
| res.append(t) | |
| for t in tlistb: | |
| tid = t.track_id | |
| if not exists.get(tid, 0): | |
| exists[tid] = 1 | |
| res.append(t) | |
| return res | |
| def sub_stracks(tlista, tlistb): | |
| """Filters out the stracks present in the second list from the first list.""" | |
| track_ids_b = {t.track_id for t in tlistb} | |
| return [t for t in tlista if t.track_id not in track_ids_b] | |
| def remove_duplicate_stracks(stracksa, stracksb): | |
| """Removes duplicate stracks from two lists based on Intersection over Union (IoU) distance.""" | |
| pdist = matching.iou_distance(stracksa, stracksb) | |
| pairs = np.where(pdist < 0.15) | |
| dupa, dupb = [], [] | |
| for p, q in zip(*pairs): | |
| timep = stracksa[p].frame_id - stracksa[p].start_frame | |
| timeq = stracksb[q].frame_id - stracksb[q].start_frame | |
| if timep > timeq: | |
| dupb.append(q) | |
| else: | |
| dupa.append(p) | |
| resa = [t for i, t in enumerate(stracksa) if i not in dupa] | |
| resb = [t for i, t in enumerate(stracksb) if i not in dupb] | |
| return resa, resb | |