Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
from time import time | |
import numpy as np | |
from ultralytics.solutions.solutions import BaseSolution | |
from ultralytics.utils.plotting import Annotator, colors | |
class SpeedEstimator(BaseSolution): | |
""" | |
A class to estimate the speed of objects in a real-time video stream based on their tracks. | |
This class extends the BaseSolution class and provides functionality for estimating object speeds using | |
tracking data in video streams. | |
Attributes: | |
spd (Dict[int, float]): Dictionary storing speed data for tracked objects. | |
trkd_ids (List[int]): List of tracked object IDs that have already been speed-estimated. | |
trk_pt (Dict[int, float]): Dictionary storing previous timestamps for tracked objects. | |
trk_pp (Dict[int, Tuple[float, float]]): Dictionary storing previous positions for tracked objects. | |
annotator (Annotator): Annotator object for drawing on images. | |
region (List[Tuple[int, int]]): List of points defining the speed estimation region. | |
track_line (List[Tuple[float, float]]): List of points representing the object's track. | |
r_s (LineString): LineString object representing the speed estimation region. | |
Methods: | |
initialize_region: Initializes the speed estimation region. | |
estimate_speed: Estimates the speed of objects based on tracking data. | |
store_tracking_history: Stores the tracking history for an object. | |
extract_tracks: Extracts tracks from the current frame. | |
display_output: Displays the output with annotations. | |
Examples: | |
>>> estimator = SpeedEstimator() | |
>>> frame = cv2.imread("frame.jpg") | |
>>> processed_frame = estimator.estimate_speed(frame) | |
>>> cv2.imshow("Speed Estimation", processed_frame) | |
""" | |
def __init__(self, **kwargs): | |
"""Initializes the SpeedEstimator object with speed estimation parameters and data structures.""" | |
super().__init__(**kwargs) | |
self.initialize_region() # Initialize speed region | |
self.spd = {} # set for speed data | |
self.trkd_ids = [] # list for already speed_estimated and tracked ID's | |
self.trk_pt = {} # set for tracks previous time | |
self.trk_pp = {} # set for tracks previous point | |
def estimate_speed(self, im0): | |
""" | |
Estimates the speed of objects based on tracking data. | |
Args: | |
im0 (np.ndarray): Input image for processing. Shape is typically (H, W, C) for RGB images. | |
Returns: | |
(np.ndarray): Processed image with speed estimations and annotations. | |
Examples: | |
>>> estimator = SpeedEstimator() | |
>>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8) | |
>>> processed_image = estimator.estimate_speed(image) | |
""" | |
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator | |
self.extract_tracks(im0) # Extract tracks | |
self.annotator.draw_region( | |
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2 | |
) # Draw region | |
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): | |
self.store_tracking_history(track_id, box) # Store track history | |
# Check if track_id is already in self.trk_pp or trk_pt initialize if not | |
if track_id not in self.trk_pt: | |
self.trk_pt[track_id] = 0 | |
if track_id not in self.trk_pp: | |
self.trk_pp[track_id] = self.track_line[-1] | |
speed_label = f"{int(self.spd[track_id])} km/h" if track_id in self.spd else self.names[int(cls)] | |
self.annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box | |
# Draw tracks of objects | |
self.annotator.draw_centroid_and_tracks( | |
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width | |
) | |
# Calculate object speed and direction based on region intersection | |
if self.LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.r_s): | |
direction = "known" | |
else: | |
direction = "unknown" | |
# Perform speed calculation and tracking updates if direction is valid | |
if direction == "known" and track_id not in self.trkd_ids: | |
self.trkd_ids.append(track_id) | |
time_difference = time() - self.trk_pt[track_id] | |
if time_difference > 0: | |
self.spd[track_id] = np.abs(self.track_line[-1][1] - self.trk_pp[track_id][1]) / time_difference | |
self.trk_pt[track_id] = time() | |
self.trk_pp[track_id] = self.track_line[-1] | |
self.display_output(im0) # display output with base class function | |
return im0 # return output image for more usage | |