Spaces:
Runtime error
Runtime error
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| import cv2 | |
| import numpy as np | |
| from ultralytics.solutions.solutions import BaseSolution | |
| from ultralytics.utils.plotting import Annotator, colors | |
| class TrackZone(BaseSolution): | |
| """ | |
| A class to manage region-based object tracking in a video stream. | |
| This class extends the BaseSolution class and provides functionality for tracking objects within a specific region | |
| defined by a polygonal area. Objects outside the region are excluded from tracking. It supports dynamic initialization | |
| of the region, allowing either a default region or a user-specified polygon. | |
| Attributes: | |
| region (ndarray): The polygonal region for tracking, represented as a convex hull. | |
| Methods: | |
| trackzone: Processes each frame of the video, applying region-based tracking. | |
| Examples: | |
| >>> tracker = TrackZone() | |
| >>> frame = cv2.imread("frame.jpg") | |
| >>> processed_frame = tracker.trackzone(frame) | |
| >>> cv2.imshow("Tracked Frame", processed_frame) | |
| """ | |
| def __init__(self, **kwargs): | |
| """Initializes the TrackZone class for tracking objects within a defined region in video streams.""" | |
| super().__init__(**kwargs) | |
| default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)] | |
| self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32)) | |
| def trackzone(self, im0): | |
| """ | |
| Processes the input frame to track objects within a defined region. | |
| This method initializes the annotator, creates a mask for the specified region, extracts tracks | |
| only from the masked area, and updates tracking information. Objects outside the region are ignored. | |
| Args: | |
| im0 (numpy.ndarray): The input image or frame to be processed. | |
| Returns: | |
| (numpy.ndarray): The processed image with tracking id and bounding boxes annotations. | |
| Examples: | |
| >>> tracker = TrackZone() | |
| >>> frame = cv2.imread("path/to/image.jpg") | |
| >>> tracker.trackzone(frame) | |
| """ | |
| self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator | |
| # Create a mask for the region and extract tracks from the masked image | |
| masked_frame = cv2.bitwise_and(im0, im0, mask=cv2.fillPoly(np.zeros_like(im0[:, :, 0]), [self.region], 255)) | |
| self.extract_tracks(masked_frame) | |
| cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2) | |
| # Iterate over boxes, track ids, classes indexes list and draw bounding boxes | |
| for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): | |
| self.annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True)) | |
| self.display_output(im0) # display output with base class function | |
| return im0 # return output image for more usage | |