Spaces:
Runtime error
Runtime error
# Original code: https://github.com/dyhan0920/PyramidNet-PyTorch/blob/master/PyramidNet.py | |
import torch | |
import torch.nn as nn | |
import math | |
def conv3x3(in_planes, out_planes, stride=1): | |
"3x3 convolution with padding" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
outchannel_ratio = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.bn1 = nn.BatchNorm2d(inplanes) | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn3 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
out = self.bn1(x) | |
out = self.conv1(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
shortcut = self.downsample(x) | |
featuremap_size = shortcut.size()[2:4] | |
else: | |
shortcut = x | |
featuremap_size = out.size()[2:4] | |
batch_size = out.size()[0] | |
residual_channel = out.size()[1] | |
shortcut_channel = shortcut.size()[1] | |
if residual_channel != shortcut_channel: | |
padding = torch.autograd.Variable(torch.cuda.FloatTensor(batch_size, residual_channel - shortcut_channel, featuremap_size[0], featuremap_size[1]).fill_(0)) | |
out += torch.cat((shortcut, padding), 1) | |
else: | |
out += shortcut | |
return out | |
class Bottleneck(nn.Module): | |
outchannel_ratio = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16): | |
super(Bottleneck, self).__init__() | |
self.bn1 = nn.BatchNorm2d(inplanes) | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, (planes), kernel_size=3, stride=stride, padding=1, bias=False, groups=1) | |
self.bn3 = nn.BatchNorm2d((planes)) | |
self.conv3 = nn.Conv2d((planes), planes * Bottleneck.outchannel_ratio, kernel_size=1, bias=False) | |
self.bn4 = nn.BatchNorm2d(planes * Bottleneck.outchannel_ratio) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
out = self.bn1(x) | |
out = self.conv1(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn3(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn4(out) | |
if self.downsample is not None: | |
shortcut = self.downsample(x) | |
featuremap_size = shortcut.size()[2:4] | |
else: | |
shortcut = x | |
featuremap_size = out.size()[2:4] | |
batch_size = out.size()[0] | |
residual_channel = out.size()[1] | |
shortcut_channel = shortcut.size()[1] | |
if residual_channel != shortcut_channel: | |
padding = torch.autograd.Variable(torch.cuda.FloatTensor(batch_size, residual_channel - shortcut_channel, featuremap_size[0], featuremap_size[1]).fill_(0)) | |
out += torch.cat((shortcut, padding), 1) | |
else: | |
out += shortcut | |
return out | |
class PyramidNet(nn.Module): | |
def __init__(self, dataset, depth, alpha, num_classes, bottleneck=False): | |
super(PyramidNet, self).__init__() | |
self.dataset = dataset | |
if self.dataset.startswith('cifar'): | |
self.inplanes = 16 | |
if bottleneck == True: | |
n = int((depth - 2) / 9) | |
block = Bottleneck | |
else: | |
n = int((depth - 2) / 6) | |
block = BasicBlock | |
self.addrate = alpha / (3*n*1.0) | |
self.input_featuremap_dim = self.inplanes | |
self.conv1 = nn.Conv2d(3, self.input_featuremap_dim, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(self.input_featuremap_dim) | |
self.featuremap_dim = self.input_featuremap_dim | |
self.layer1 = self.pyramidal_make_layer(block, n) | |
self.layer2 = self.pyramidal_make_layer(block, n, stride=2) | |
self.layer3 = self.pyramidal_make_layer(block, n, stride=2) | |
self.final_featuremap_dim = self.input_featuremap_dim | |
self.bn_final= nn.BatchNorm2d(self.final_featuremap_dim) | |
self.relu_final = nn.ReLU(inplace=True) | |
self.avgpool = nn.AvgPool2d(8) | |
self.fc = nn.Linear(self.final_featuremap_dim, num_classes) | |
elif dataset == 'imagenet': | |
blocks ={18: BasicBlock, 34: BasicBlock, 50: Bottleneck, 101: Bottleneck, 152: Bottleneck, 200: Bottleneck} | |
layers ={18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3]} | |
if layers.get(depth) is None: | |
if bottleneck == True: | |
blocks[depth] = Bottleneck | |
temp_cfg = int((depth-2)/12) | |
else: | |
blocks[depth] = BasicBlock | |
temp_cfg = int((depth-2)/8) | |
layers[depth]= [temp_cfg, temp_cfg, temp_cfg, temp_cfg] | |
print('=> the layer configuration for each stage is set to', layers[depth]) | |
self.inplanes = 64 | |
self.addrate = alpha / (sum(layers[depth])*1.0) | |
self.input_featuremap_dim = self.inplanes | |
self.conv1 = nn.Conv2d(3, self.input_featuremap_dim, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(self.input_featuremap_dim) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.featuremap_dim = self.input_featuremap_dim | |
self.layer1 = self.pyramidal_make_layer(blocks[depth], layers[depth][0]) | |
self.layer2 = self.pyramidal_make_layer(blocks[depth], layers[depth][1], stride=2) | |
self.layer3 = self.pyramidal_make_layer(blocks[depth], layers[depth][2], stride=2) | |
self.layer4 = self.pyramidal_make_layer(blocks[depth], layers[depth][3], stride=2) | |
self.final_featuremap_dim = self.input_featuremap_dim | |
self.bn_final= nn.BatchNorm2d(self.final_featuremap_dim) | |
self.relu_final = nn.ReLU(inplace=True) | |
self.avgpool = nn.AvgPool2d(7) | |
self.fc = nn.Linear(self.final_featuremap_dim, num_classes) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def pyramidal_make_layer(self, block, block_depth, stride=1): | |
downsample = None | |
if stride != 1: # or self.inplanes != int(round(featuremap_dim_1st)) * block.outchannel_ratio: | |
downsample = nn.AvgPool2d((2,2), stride = (2, 2), ceil_mode=True) | |
layers = [] | |
self.featuremap_dim = self.featuremap_dim + self.addrate | |
layers.append(block(self.input_featuremap_dim, int(round(self.featuremap_dim)), stride, downsample)) | |
for i in range(1, block_depth): | |
temp_featuremap_dim = self.featuremap_dim + self.addrate | |
layers.append(block(int(round(self.featuremap_dim)) * block.outchannel_ratio, int(round(temp_featuremap_dim)), 1)) | |
self.featuremap_dim = temp_featuremap_dim | |
self.input_featuremap_dim = int(round(self.featuremap_dim)) * block.outchannel_ratio | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
if self.dataset == 'cifar10' or self.dataset == 'cifar100': | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.bn_final(x) | |
x = self.relu_final(x) | |
x = self.avgpool(x) | |
x = x.view(x.size(0), -1) | |
x = self.fc(x) | |
elif self.dataset == 'imagenet': | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.bn_final(x) | |
x = self.relu_final(x) | |
x = self.avgpool(x) | |
x = x.view(x.size(0), -1) | |
x = self.fc(x) | |
return x | |