TextureScraping / libs /data_coco_stuff.py
sunshineatnoon
Add application file
1b2a9b1
raw
history blame
5.91 kB
import cv2
import torch
from PIL import Image
import os.path as osp
import numpy as np
from torch.utils import data
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import random
class RandomResizedCrop(object):
def __init__(self, N, res, scale=(0.5, 1.0)):
self.res = res
self.scale = scale
self.rscale = [np.random.uniform(*scale) for _ in range(N)]
self.rcrop = [(np.random.uniform(0, 1), np.random.uniform(0, 1)) for _ in range(N)]
def random_crop(self, idx, img):
ws, hs = self.rcrop[idx]
res1 = int(img.size(-1))
res2 = int(self.rscale[idx]*res1)
i1 = int(round((res1-res2)*ws))
j1 = int(round((res1-res2)*hs))
return img[:, :, i1:i1+res2, j1:j1+res2]
def __call__(self, indice, image):
new_image = []
res_tar = self.res // 4 if image.size(1) > 5 else self.res # View 1 or View 2?
for i, idx in enumerate(indice):
img = image[[i]]
img = self.random_crop(idx, img)
img = F.interpolate(img, res_tar, mode='bilinear', align_corners=False)
new_image.append(img)
new_image = torch.cat(new_image)
return new_image
class RandomVerticalFlip(object):
def __init__(self, N, p=0.5):
self.p_ref = p
self.plist = np.random.random_sample(N)
def __call__(self, indice, image):
I = np.nonzero(self.plist[indice] < self.p_ref)[0]
if len(image.size()) == 3:
image_t = image[I].flip([1])
else:
image_t = image[I].flip([2])
return torch.stack([image_t[np.where(I==i)[0][0]] if i in I else image[i] for i in range(image.size(0))])
class RandomHorizontalTensorFlip(object):
def __init__(self, N, p=0.5):
self.p_ref = p
self.plist = np.random.random_sample(N)
def __call__(self, indice, image, is_label=False):
I = np.nonzero(self.plist[indice] < self.p_ref)[0]
if len(image.size()) == 3:
image_t = image[I].flip([2])
else:
image_t = image[I].flip([3])
return torch.stack([image_t[np.where(I==i)[0][0]] if i in I else image[i] for i in range(image.size(0))])
class _Coco164kCuratedFew(data.Dataset):
"""Base class
This contains fields and methods common to all COCO 164k curated few datasets:
(curated) Coco164kFew_Stuff
(curated) Coco164kFew_Stuff_People
(curated) Coco164kFew_Stuff_Animals
(curated) Coco164kFew_Stuff_People_Animals
"""
def __init__(self, root, img_size, crop_size, split = "train2017"):
super(_Coco164kCuratedFew, self).__init__()
# work out name
self.split = split
self.root = root
self.include_things_labels = False # people
self.incl_animal_things = False # animals
version = 6
name = "Coco164kFew_Stuff"
if self.include_things_labels and self.incl_animal_things:
name += "_People_Animals"
elif self.include_things_labels:
name += "_People"
elif self.incl_animal_things:
name += "_Animals"
self.name = (name + "_%d" % version)
print("Specific type of _Coco164kCuratedFew dataset: %s" % self.name)
self._set_files()
self.transform = transforms.Compose([
transforms.RandomChoice([
transforms.ColorJitter(brightness=0.05),
transforms.ColorJitter(contrast=0.05),
transforms.ColorJitter(saturation=0.01),
transforms.ColorJitter(hue=0.01)]),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.Resize(int(img_size)),
transforms.RandomCrop(crop_size)])
N = len(self.files)
self.random_horizontal_flip = RandomHorizontalTensorFlip(N=N)
self.random_vertical_flip = RandomVerticalFlip(N=N)
self.random_resized_crop = RandomResizedCrop(N=N, res=self.res1, scale=self.scale)
def _set_files(self):
# Create data list by parsing the "images" folder
if self.split in ["train2017", "val2017"]:
file_list = osp.join(self.root, "curated", self.split, self.name + ".txt")
file_list = tuple(open(file_list, "r"))
file_list = [id_.rstrip() for id_ in file_list]
self.files = file_list
print("In total {} images.".format(len(self.files)))
else:
raise ValueError("Invalid split name: {}".format(self.split))
def __getitem__(self, index):
# same as _Coco164k
# Set paths
image_id = self.files[index]
image_path = osp.join(self.root, "images", self.split, image_id + ".jpg")
label_path = osp.join(self.root, "annotations", self.split,
image_id + ".png")
# Load an image
#image = cv2.imread(image_path, cv2.IMREAD_COLOR).astype(np.uint8)
ori_img = Image.open(image_path)
ori_img = self.transform(ori_img)
ori_img = np.array(ori_img)
if ori_img.ndim < 3:
ori_img = np.expand_dims(ori_img, axis=2).repeat(3, axis = 2)
ori_img = ori_img[:, :, :3]
ori_img = torch.from_numpy(ori_img).float().permute(2, 0, 1)
ori_img = ori_img / 255.0
#label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE).astype(np.int32)
#label[label == 255] = -1 # to be consistent with 10k
rets = []
rets.append(ori_img)
#rets.append(label)
return rets
def __len__(self):
return len(self.files)