Spaces:
Sleeping
Sleeping
# Natural Language Toolkit: Simple Tokenizers | |
# | |
# Copyright (C) 2001-2023 NLTK Project | |
# Author: Edward Loper <edloper@gmail.com> | |
# Steven Bird <stevenbird1@gmail.com> | |
# URL: <https://www.nltk.org> | |
# For license information, see LICENSE.TXT | |
r""" | |
Simple Tokenizers | |
These tokenizers divide strings into substrings using the string | |
``split()`` method. | |
When tokenizing using a particular delimiter string, use | |
the string ``split()`` method directly, as this is more efficient. | |
The simple tokenizers are *not* available as separate functions; | |
instead, you should just use the string ``split()`` method directly: | |
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
>>> s.split() # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.', | |
'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.'] | |
>>> s.split(' ') # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '', | |
'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.'] | |
>>> s.split('\n') # doctest: +NORMALIZE_WHITESPACE | |
['Good muffins cost $3.88', 'in New York. Please buy me', | |
'two of them.', '', 'Thanks.'] | |
The simple tokenizers are mainly useful because they follow the | |
standard ``TokenizerI`` interface, and so can be used with any code | |
that expects a tokenizer. For example, these tokenizers can be used | |
to specify the tokenization conventions when building a `CorpusReader`. | |
""" | |
from nltk.tokenize.api import StringTokenizer, TokenizerI | |
from nltk.tokenize.util import regexp_span_tokenize, string_span_tokenize | |
class SpaceTokenizer(StringTokenizer): | |
r"""Tokenize a string using the space character as a delimiter, | |
which is the same as ``s.split(' ')``. | |
>>> from nltk.tokenize import SpaceTokenizer | |
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
>>> SpaceTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '', | |
'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.'] | |
""" | |
_string = " " | |
class TabTokenizer(StringTokenizer): | |
r"""Tokenize a string use the tab character as a delimiter, | |
the same as ``s.split('\t')``. | |
>>> from nltk.tokenize import TabTokenizer | |
>>> TabTokenizer().tokenize('a\tb c\n\t d') | |
['a', 'b c\n', ' d'] | |
""" | |
_string = "\t" | |
class CharTokenizer(StringTokenizer): | |
"""Tokenize a string into individual characters. If this functionality | |
is ever required directly, use ``for char in string``. | |
""" | |
def tokenize(self, s): | |
return list(s) | |
def span_tokenize(self, s): | |
yield from enumerate(range(1, len(s) + 1)) | |
class LineTokenizer(TokenizerI): | |
r"""Tokenize a string into its lines, optionally discarding blank lines. | |
This is similar to ``s.split('\n')``. | |
>>> from nltk.tokenize import LineTokenizer | |
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
>>> LineTokenizer(blanklines='keep').tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good muffins cost $3.88', 'in New York. Please buy me', | |
'two of them.', '', 'Thanks.'] | |
>>> # same as [l for l in s.split('\n') if l.strip()]: | |
>>> LineTokenizer(blanklines='discard').tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good muffins cost $3.88', 'in New York. Please buy me', | |
'two of them.', 'Thanks.'] | |
:param blanklines: Indicates how blank lines should be handled. Valid values are: | |
- ``discard``: strip blank lines out of the token list before returning it. | |
A line is considered blank if it contains only whitespace characters. | |
- ``keep``: leave all blank lines in the token list. | |
- ``discard-eof``: if the string ends with a newline, then do not generate | |
a corresponding token ``''`` after that newline. | |
""" | |
def __init__(self, blanklines="discard"): | |
valid_blanklines = ("discard", "keep", "discard-eof") | |
if blanklines not in valid_blanklines: | |
raise ValueError( | |
"Blank lines must be one of: %s" % " ".join(valid_blanklines) | |
) | |
self._blanklines = blanklines | |
def tokenize(self, s): | |
lines = s.splitlines() | |
# If requested, strip off blank lines. | |
if self._blanklines == "discard": | |
lines = [l for l in lines if l.rstrip()] | |
elif self._blanklines == "discard-eof": | |
if lines and not lines[-1].strip(): | |
lines.pop() | |
return lines | |
# discard-eof not implemented | |
def span_tokenize(self, s): | |
if self._blanklines == "keep": | |
yield from string_span_tokenize(s, r"\n") | |
else: | |
yield from regexp_span_tokenize(s, r"\n(\s+\n)*") | |
###################################################################### | |
# { Tokenization Functions | |
###################################################################### | |
# XXX: it is stated in module docs that there is no function versions | |
def line_tokenize(text, blanklines="discard"): | |
return LineTokenizer(blanklines).tokenize(text) | |