Spaces:
Sleeping
Sleeping
# Natural Language Toolkit: Tokenizers | |
# | |
# Copyright (C) 2001-2023 NLTK Project | |
# Author: Edward Loper <edloper@gmail.com> | |
# Steven Bird <stevenbird1@gmail.com> | |
# Trevor Cohn <tacohn@csse.unimelb.edu.au> | |
# URL: <https://www.nltk.org> | |
# For license information, see LICENSE.TXT | |
r""" | |
Regular-Expression Tokenizers | |
A ``RegexpTokenizer`` splits a string into substrings using a regular expression. | |
For example, the following tokenizer forms tokens out of alphabetic sequences, | |
money expressions, and any other non-whitespace sequences: | |
>>> from nltk.tokenize import RegexpTokenizer | |
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
>>> tokenizer = RegexpTokenizer(r'\w+|\$[\d\.]+|\S+') | |
>>> tokenizer.tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York', '.', | |
'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
A ``RegexpTokenizer`` can use its regexp to match delimiters instead: | |
>>> tokenizer = RegexpTokenizer(r'\s+', gaps=True) | |
>>> tokenizer.tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.', | |
'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.'] | |
Note that empty tokens are not returned when the delimiter appears at | |
the start or end of the string. | |
The material between the tokens is discarded. For example, | |
the following tokenizer selects just the capitalized words: | |
>>> capword_tokenizer = RegexpTokenizer(r'[A-Z]\w+') | |
>>> capword_tokenizer.tokenize(s) | |
['Good', 'New', 'York', 'Please', 'Thanks'] | |
This module contains several subclasses of ``RegexpTokenizer`` | |
that use pre-defined regular expressions. | |
>>> from nltk.tokenize import BlanklineTokenizer | |
>>> # Uses '\s*\n\s*\n\s*': | |
>>> BlanklineTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.', | |
'Thanks.'] | |
All of the regular expression tokenizers are also available as functions: | |
>>> from nltk.tokenize import regexp_tokenize, wordpunct_tokenize, blankline_tokenize | |
>>> regexp_tokenize(s, pattern=r'\w+|\$[\d\.]+|\S+') # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York', '.', | |
'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
>>> wordpunct_tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', | |
'.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
>>> blankline_tokenize(s) | |
['Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.', 'Thanks.'] | |
Caution: The function ``regexp_tokenize()`` takes the text as its | |
first argument, and the regular expression pattern as its second | |
argument. This differs from the conventions used by Python's | |
``re`` functions, where the pattern is always the first argument. | |
(This is for consistency with the other NLTK tokenizers.) | |
""" | |
import re | |
from nltk.tokenize.api import TokenizerI | |
from nltk.tokenize.util import regexp_span_tokenize | |
class RegexpTokenizer(TokenizerI): | |
r""" | |
A tokenizer that splits a string using a regular expression, which | |
matches either the tokens or the separators between tokens. | |
>>> tokenizer = RegexpTokenizer(r'\w+|\$[\d\.]+|\S+') | |
:type pattern: str | |
:param pattern: The pattern used to build this tokenizer. | |
(This pattern must not contain capturing parentheses; | |
Use non-capturing parentheses, e.g. (?:...), instead) | |
:type gaps: bool | |
:param gaps: True if this tokenizer's pattern should be used | |
to find separators between tokens; False if this | |
tokenizer's pattern should be used to find the tokens | |
themselves. | |
:type discard_empty: bool | |
:param discard_empty: True if any empty tokens `''` | |
generated by the tokenizer should be discarded. Empty | |
tokens can only be generated if `_gaps == True`. | |
:type flags: int | |
:param flags: The regexp flags used to compile this | |
tokenizer's pattern. By default, the following flags are | |
used: `re.UNICODE | re.MULTILINE | re.DOTALL`. | |
""" | |
def __init__( | |
self, | |
pattern, | |
gaps=False, | |
discard_empty=True, | |
flags=re.UNICODE | re.MULTILINE | re.DOTALL, | |
): | |
# If they gave us a regexp object, extract the pattern. | |
pattern = getattr(pattern, "pattern", pattern) | |
self._pattern = pattern | |
self._gaps = gaps | |
self._discard_empty = discard_empty | |
self._flags = flags | |
self._regexp = None | |
def _check_regexp(self): | |
if self._regexp is None: | |
self._regexp = re.compile(self._pattern, self._flags) | |
def tokenize(self, text): | |
self._check_regexp() | |
# If our regexp matches gaps, use re.split: | |
if self._gaps: | |
if self._discard_empty: | |
return [tok for tok in self._regexp.split(text) if tok] | |
else: | |
return self._regexp.split(text) | |
# If our regexp matches tokens, use re.findall: | |
else: | |
return self._regexp.findall(text) | |
def span_tokenize(self, text): | |
self._check_regexp() | |
if self._gaps: | |
for left, right in regexp_span_tokenize(text, self._regexp): | |
if not (self._discard_empty and left == right): | |
yield left, right | |
else: | |
for m in re.finditer(self._regexp, text): | |
yield m.span() | |
def __repr__(self): | |
return "{}(pattern={!r}, gaps={!r}, discard_empty={!r}, flags={!r})".format( | |
self.__class__.__name__, | |
self._pattern, | |
self._gaps, | |
self._discard_empty, | |
self._flags, | |
) | |
class WhitespaceTokenizer(RegexpTokenizer): | |
r""" | |
Tokenize a string on whitespace (space, tab, newline). | |
In general, users should use the string ``split()`` method instead. | |
>>> from nltk.tokenize import WhitespaceTokenizer | |
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
>>> WhitespaceTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.', | |
'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.'] | |
""" | |
def __init__(self): | |
RegexpTokenizer.__init__(self, r"\s+", gaps=True) | |
class BlanklineTokenizer(RegexpTokenizer): | |
""" | |
Tokenize a string, treating any sequence of blank lines as a delimiter. | |
Blank lines are defined as lines containing no characters, except for | |
space or tab characters. | |
""" | |
def __init__(self): | |
RegexpTokenizer.__init__(self, r"\s*\n\s*\n\s*", gaps=True) | |
class WordPunctTokenizer(RegexpTokenizer): | |
r""" | |
Tokenize a text into a sequence of alphabetic and | |
non-alphabetic characters, using the regexp ``\w+|[^\w\s]+``. | |
>>> from nltk.tokenize import WordPunctTokenizer | |
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
>>> WordPunctTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', | |
'.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
""" | |
def __init__(self): | |
RegexpTokenizer.__init__(self, r"\w+|[^\w\s]+") | |
###################################################################### | |
# { Tokenization Functions | |
###################################################################### | |
def regexp_tokenize( | |
text, | |
pattern, | |
gaps=False, | |
discard_empty=True, | |
flags=re.UNICODE | re.MULTILINE | re.DOTALL, | |
): | |
""" | |
Return a tokenized copy of *text*. See :class:`.RegexpTokenizer` | |
for descriptions of the arguments. | |
""" | |
tokenizer = RegexpTokenizer(pattern, gaps, discard_empty, flags) | |
return tokenizer.tokenize(text) | |
blankline_tokenize = BlanklineTokenizer().tokenize | |
wordpunct_tokenize = WordPunctTokenizer().tokenize | |