Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import unittest | |
import numpy as np | |
import torch | |
from mmocr.utils import (bbox2poly, bbox_center_distance, bbox_diag_distance, | |
bezier2polygon, is_on_same_line, rescale_bbox, | |
rescale_bboxes, stitch_boxes_into_lines) | |
from mmocr.utils.bbox_utils import bbox_jitter | |
class TestBbox2poly(unittest.TestCase): | |
def setUp(self) -> None: | |
self.box_array = np.array([1, 1, 2, 2]) | |
self.box_list = [1, 1, 2, 2] | |
self.box_tensor = torch.tensor([1, 1, 2, 2]) | |
self.gt_xyxy = np.array([1, 1, 2, 1, 2, 2, 1, 2]) | |
self.gt_xywh = np.array([1, 1, 3, 1, 3, 3, 1, 3]) | |
def test_bbox2poly(self): | |
# mode: xyxy | |
# test np.array | |
self.assertTrue( | |
np.array_equal(bbox2poly(self.box_array), self.gt_xyxy)) | |
# test list | |
self.assertTrue(np.array_equal(bbox2poly(self.box_list), self.gt_xyxy)) | |
# test tensor | |
self.assertTrue( | |
np.array_equal(bbox2poly(self.box_tensor), self.gt_xyxy)) | |
# mode: xywh | |
# test np.array | |
self.assertTrue( | |
np.array_equal( | |
bbox2poly(self.box_array, mode='xywh'), self.gt_xywh)) | |
# test list | |
self.assertTrue( | |
np.array_equal( | |
bbox2poly(self.box_list, mode='xywh'), self.gt_xywh)) | |
# test tensor | |
self.assertTrue( | |
np.array_equal( | |
bbox2poly(self.box_tensor, mode='xywh'), self.gt_xywh)) | |
# invalid mode | |
with self.assertRaises(NotImplementedError): | |
bbox2poly(self.box_tensor, mode='a') | |
class TestBoxCenterDistance(unittest.TestCase): | |
def setUp(self) -> None: | |
self.box1_list = [1, 1, 3, 3] | |
self.box2_list = [2, 2, 4, 2] | |
self.box1_array = np.array([1, 1, 3, 3]) | |
self.box2_array = np.array([2, 2, 4, 2]) | |
self.box1_tensor = torch.tensor([1, 1, 3, 3]) | |
self.box2_tensor = torch.tensor([2, 2, 4, 2]) | |
self.gt = 1 | |
def test_box_center_distance(self): | |
# test list | |
self.assertEqual( | |
bbox_center_distance(self.box1_list, self.box2_list), self.gt) | |
# test np.array | |
self.assertEqual( | |
bbox_center_distance(self.box1_array, self.box2_array), self.gt) | |
# test tensor | |
self.assertEqual( | |
bbox_center_distance(self.box1_tensor, self.box2_tensor), self.gt) | |
class TestBoxDiagDistance(unittest.TestCase): | |
def setUp(self) -> None: | |
self.box_list1 = [0, 0, 1, 1, 0, 10, -10, 0] | |
self.box_array1 = np.array(self.box_list1) | |
self.box_tensor1 = torch.tensor(self.box_list1) | |
self.gt1 = 10 | |
self.box_list2 = [0, 0, 1, 1] | |
self.box_array2 = np.array(self.box_list2) | |
self.box_tensor2 = torch.tensor(self.box_list2) | |
self.gt2 = np.sqrt(2) | |
def test_bbox_diag_distance(self): | |
# quad [x1, y1, x2, y2, x3, y3, x4, y4] | |
# list | |
self.assertEqual(bbox_diag_distance(self.box_list1), self.gt1) | |
# array | |
self.assertEqual(bbox_diag_distance(self.box_array1), self.gt1) | |
# tensor | |
self.assertEqual(bbox_diag_distance(self.box_tensor1), self.gt1) | |
# rect [x1, y1, x2, y2] | |
# list | |
self.assertAlmostEqual(bbox_diag_distance(self.box_list2), self.gt2) | |
# array | |
self.assertAlmostEqual(bbox_diag_distance(self.box_array2), self.gt2) | |
# tensor | |
self.assertAlmostEqual(bbox_diag_distance(self.box_tensor2), self.gt2) | |
class TestBezier2Polygon(unittest.TestCase): | |
def setUp(self) -> None: | |
self.bezier_points1 = [ | |
37.0, 249.0, 72.5, 229.55, 95.34, 220.65, 134.0, 216.0, 132.0, | |
233.0, 82.11, 240.2, 72.46, 247.16, 38.0, 263.0 | |
] | |
self.gt1 = np.array([[37.0, 249.0], | |
[42.50420761043885, 246.01570199737577], | |
[47.82291296107305, 243.2012392477038], | |
[52.98102930456334, 240.5511007435486], | |
[58.00346989357049, 238.05977547747486], | |
[62.91514798075522, 235.721752442047], | |
[67.74097681877824, 233.53152062982943], | |
[72.50586966030032, 231.48356903338674], | |
[77.23473975798221, 229.57238664528356], | |
[81.95250036448464, 227.79246245808432], | |
[86.68406473246829, 226.13828546435346], | |
[91.45434611459396, 224.60434465665548], | |
[96.28825776352238, 223.18512902755504], | |
[101.21071293191426, 221.87512756961655], | |
[106.24662487243039, 220.6688292754046], | |
[111.42090683773145, 219.5607231374836], | |
[116.75847208047819, 218.5452981484181], | |
[122.28423385333137, 217.6170433007727], | |
[128.02310540895172, 216.77044758711182], | |
[134.0, 216.0], [132.0, 233.0], | |
[124.4475521213005, 234.13617728531858], | |
[117.50700976818779, 235.2763434903047], | |
[111.12146960198277, 236.42847645429362], | |
[105.2340282840064, 237.6005540166205], | |
[99.78778247557953, 238.80055401662054], | |
[94.72582883802303, 240.0364542936288], | |
[89.99126403265781, 241.31623268698053], | |
[85.52718472080478, 242.64786703601104], | |
[81.27668756378483, 244.03933518005545], | |
[77.1828692229188, 245.49861495844874], | |
[73.18882635952762, 247.0336842105263], | |
[69.23765563493221, 248.65252077562326], | |
[65.27245371045342, 250.3631024930748], | |
[61.23631724741216, 252.17340720221605], | |
[57.07234290712931, 254.09141274238226], | |
[52.723627350925796, 256.12509695290856], | |
[48.13326724012247, 258.2824376731302], | |
[43.24435923604024, 260.5714127423822], | |
[38.0, 263.0]]) | |
self.bezier_points2 = [0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3] | |
self.gt2 = np.array([[0, 0], [0, 1.5], [0, 3], [1, 0], [1, 1.5], | |
[1, 3]]) | |
self.invalid_input = [0, 1] | |
def test_bezier2polygon(self): | |
self.assertTrue( | |
np.allclose(bezier2polygon(self.bezier_points1), self.gt1)) | |
with self.assertRaises(AssertionError): | |
bezier2polygon(self.bezier_points2, num_sample=-1) | |
with self.assertRaises(AssertionError): | |
bezier2polygon(self.invalid_input, num_sample=-1) | |
class TestBboxJitter(unittest.TestCase): | |
def test_bbox_jitter(self): | |
dummy_points_x = [20, 120, 120, 20] | |
dummy_points_y = [20, 20, 40, 40] | |
kwargs = dict(jitter_ratio_x=0.0, jitter_ratio_y=0.0) | |
with self.assertRaises(AssertionError): | |
bbox_jitter([], dummy_points_y) | |
with self.assertRaises(AssertionError): | |
bbox_jitter(dummy_points_x, []) | |
with self.assertRaises(AssertionError): | |
bbox_jitter(dummy_points_x, dummy_points_y, jitter_ratio_x=1.) | |
with self.assertRaises(AssertionError): | |
bbox_jitter(dummy_points_x, dummy_points_y, jitter_ratio_y=1.) | |
bbox_jitter(dummy_points_x, dummy_points_y, **kwargs) | |
assert np.allclose(dummy_points_x, [20, 120, 120, 20]) | |
assert np.allclose(dummy_points_y, [20, 20, 40, 40]) | |
class TestIsOnSameLine(unittest.TestCase): | |
def test_box_on_line(self): | |
# regular boxes | |
box1 = [0, 0, 1, 0, 1, 1, 0, 1] | |
box2 = [2, 0.5, 3, 0.5, 3, 1.5, 2, 1.5] | |
box3 = [4, 0.8, 5, 0.8, 5, 1.8, 4, 1.8] | |
self.assertTrue(is_on_same_line(box1, box2, 0.5)) | |
self.assertFalse(is_on_same_line(box1, box3, 0.5)) | |
# irregular box4 | |
box4 = [0, 0, 1, 1, 1, 2, 0, 1] | |
box5 = [2, 1.5, 3, 1.5, 3, 2.5, 2, 2.5] | |
box6 = [2, 1.6, 3, 1.6, 3, 2.6, 2, 2.6] | |
self.assertTrue(is_on_same_line(box4, box5, 0.5)) | |
self.assertFalse(is_on_same_line(box4, box6, 0.5)) | |
class TestStitchBoxesIntoLines(unittest.TestCase): | |
def test_stitch_boxes_into_lines(self): | |
boxes = [ # regular boxes | |
[0, 0, 1, 0, 1, 1, 0, 1], | |
[2, 0.5, 3, 0.5, 3, 1.5, 2, 1.5], | |
[3, 1.2, 4, 1.2, 4, 2.2, 3, 2.2], | |
[5, 0.5, 6, 0.5, 6, 1.5, 5, 1.5], | |
# irregular box | |
[6, 1.5, 7, 1.25, 7, 1.75, 6, 1.75] | |
] | |
raw_input = [{ | |
'box': boxes[i], | |
'text': str(i) | |
} for i in range(len(boxes))] | |
result = stitch_boxes_into_lines(raw_input, 1, 0.5) | |
# Final lines: [0, 1], [2], [3, 4] | |
# box 0, 1, 3, 4 are on the same line but box 3 is 2 pixels away from | |
# box 1 | |
# box 3 and 4 are on the same line since the length of overlapping part | |
# >= 0.5 * the y-axis length of box 5 | |
expected_result = [{ | |
'box': [0, 0, 3, 0, 3, 1.5, 0, 1.5], | |
'text': '0 1' | |
}, { | |
'box': [3, 1.2, 4, 1.2, 4, 2.2, 3, 2.2], | |
'text': '2' | |
}, { | |
'box': [5, 0.5, 7, 0.5, 7, 1.75, 5, 1.75], | |
'text': '3 4' | |
}] | |
result.sort(key=lambda x: x['box'][0]) | |
expected_result.sort(key=lambda x: x['box'][0]) | |
self.assertEqual(result, expected_result) | |
class TestRescaleBbox(unittest.TestCase): | |
def setUp(self) -> None: | |
self.bbox = np.array([0, 0, 1, 1]) | |
self.bboxes = np.array([[0, 0, 1, 1], [1, 1, 2, 2]]) | |
self.scale = 2 | |
def test_rescale_bbox(self): | |
# mul | |
rescaled_bbox = rescale_bbox(self.bbox, self.scale, mode='mul') | |
self.assertTrue(np.allclose(rescaled_bbox, np.array([0, 0, 2, 2]))) | |
# div | |
rescaled_bbox = rescale_bbox(self.bbox, self.scale, mode='div') | |
self.assertTrue(np.allclose(rescaled_bbox, np.array([0, 0, 0.5, 0.5]))) | |
def test_rescale_bboxes(self): | |
# mul | |
rescaled_bboxes = rescale_bboxes(self.bboxes, self.scale, mode='mul') | |
self.assertTrue( | |
np.allclose(rescaled_bboxes, np.array([[0, 0, 2, 2], [2, 2, 4, | |
4]]))) | |
# div | |
rescaled_bboxes = rescale_bboxes(self.bboxes, self.scale, mode='div') | |
self.assertTrue( | |
np.allclose(rescaled_bboxes, | |
np.array([[0, 0, 0.5, 0.5], [0.5, 0.5, 1, 1]]))) | |