Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from joblib import load | |
from PIL import Image | |
from transformers import VisionEncoderDecoderModel | |
device = 'cpu' | |
# tokenizer = load("./pages/tokenizer_v3.joblib") | |
# feature_extractor = load("./pages/feature_extractor_v3.joblib") | |
tokenizer = load("tokenizer_v3.joblib") | |
feature_extractor = load("feature_extractor_v3.joblib") | |
model = VisionEncoderDecoderModel.from_pretrained("dumperize/movie-picture-captioning") | |
# model = load("model_img2txt_v3.joblib") | |
model.load_state_dict(torch.load("model_weights_i2t_fin.pt", map_location=torch.device('cpu'))) | |
# model.eval() | |
max_length = 512 | |
min_length = 32 | |
num_beams = 7 | |
gen_kwargs = {"max_length": max_length, "min_length": min_length, "num_beams": num_beams} | |
uploaded_file = st.file_uploader("Выберите изображение обложки книги в формате jpeg или jpg...", type=["jpg", "jpeg"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Загруженное изображение') | |
image = image.resize([224,224]) | |
if image.mode != "RGB": | |
image = image.convert(mode="RGB") | |
pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
st.write(preds[0]) | |
# image = Image.open(image_path) | |
# image = image.resize([224,224]) | |
# if image.mode != "RGB": | |
# image = image.convert(mode="RGB") | |
# pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values | |
# pixel_values = pixel_values.to(device) | |
# output_ids = model.generate(pixel_values, **gen_kwargs) | |
# preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
# print([pred.strip() for pred in preds]) | |