Image_Narration / app.py
sungyi654's picture
Update app.py
3ca247c verified
import os
from PIL import Image
from gtts import gTTS
from io import BytesIO
import io
from openai import OpenAI
#from dotenv import load_dotenv
import streamlit as st
from transformers import pipeline
# For explaining what is going on in the image
img_nar = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
#load_dotenv()
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
st.header("Image Narrator")
# Temporary
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if 'history' not in st.session_state:
st.session_state['history'] = []
personality = st.text_input("Enter a personality")
image_narration = "No narration given"
# Check if an image has been uploaded
if uploaded_image is not None:
# Convert the uploaded file to a PIL image
bytes_data = uploaded_image.getvalue()
pil_image = Image.open(io.BytesIO(bytes_data))
# Now, use the PIL image with the pipeline
image_narration = img_nar(pil_image)
# Display the uploaded image using the original bytes data
st.image(pil_image, caption='Uploaded Image.', use_column_width=True)
image_narration = image_narration[0]["generated_text"]
#st.write(image_narration)
def update_and_get_narration(personality, user_input):
if personality and user_input:
st.session_state['history'].append({"role": "user", "content": user_input})
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": f"You reiterate what is said to you but narrate it like a {personality}."}
] + st.session_state['history']
)
gpt_response = response.choices[0].message.content
st.session_state['history'].append({"role": "assistant", "content": gpt_response})
return gpt_response
else:
return "Please enter both a personality and some image classification text."
if st.button('Narrate'):
narration = update_and_get_narration(personality, image_narration)
st.write(narration)
tts = gTTS(text=narration, lang='en')
audio_buffer = BytesIO()
tts.write_to_fp(audio_buffer)
audio_buffer.seek(0)
st.audio(audio_buffer, format='audio/mp3', start_time=0)
else:
st.write(st.session_state['history'][-1]['content'] if st.session_state['history'] else "Narration will appear here.")