Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI | |
| import os | |
| from dotenv import load_dotenv | |
| import pandas as pd | |
| from langchain.document_loaders import DirectoryLoader | |
| from agents import master_agent, plant_agent, eda_agent, rag_agent | |
| load_dotenv() | |
| os.environ['OPENAI_API_KEY'] = os.environ.get("OPENAI_API_KEY") | |
| os.environ['SERPAPI_API_KEY'] = os.getenv('SERPAPI_API_KEY') | |
| master = master_agent.init_config() | |
| print("init master agent") | |
| plant = plant_agent.init_config() | |
| print("init plant agent") | |
| df = pd.read_csv('data/csv/plant_syn.csv') | |
| eda = eda_agent.init_config(df) | |
| print("init eda agent") | |
| loader = DirectoryLoader("data/txt", glob="*.txt") | |
| rag = rag_agent.init_config(loader) | |
| loader = DirectoryLoader("data/txt", glob="*.txt") | |
| documents = loader.load() | |
| print("init rag agent") | |
| app = FastAPI() | |
| def hello(): | |
| return {"message": "Hello World"} | |
| def ask(question: str): | |
| category = eval(master_agent.answer_question(master, question)) | |
| temp_question = f"Referring to the Blue Indigo False Plant, {question}" | |
| print(question) | |
| print(temp_question) | |
| print(category) | |
| if category['category_number'] == 1: | |
| response = eval(plant_agent.answer_question(plant, temp_question)) | |
| category.update(response) | |
| elif category['category_number'] == 2: | |
| response = eda_agent.answer_question(eda, temp_question) | |
| category['response'] = response | |
| elif category['category_number'] == 3: | |
| response = rag_agent.answer_question(rag, temp_question) | |
| category['response'] = response | |
| category['question'] = question | |
| return category |