sunder-ali commited on
Commit
254cb26
1 Parent(s): a3034b2

Upload 2 files

Browse files
Files changed (2) hide show
  1. demo_app.py +60 -0
  2. requirements.txt +6 -0
demo_app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import os.path
4
+ import torch
5
+ from PIL import Image
6
+ from utils import utils_model
7
+ from utils import utils_image as util
8
+ import numpy as np
9
+ import cv2
10
+
11
+ st.set_page_config(layout="wide", page_title="Image Denoising Demo")
12
+
13
+ st.title("Image Real Denoising Demo")
14
+ st.write("The model removes the noise from real world images.")
15
+ st.sidebar.write("## Upload and download :gear:")
16
+
17
+ # Create the columns
18
+ col1, col2 = st.columns(2)
19
+
20
+ upfile = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
21
+
22
+ if upfile is not None:
23
+ img = Image.open(upfile)
24
+ img.save('test1.png')
25
+
26
+ n_channels = 3
27
+ img_U = util.imread_uint('test1.png', n_channels=n_channels)
28
+ #img = Image.open(upfile)
29
+ col1.write("Original Noisy Image")
30
+ col1.image(upfile)
31
+
32
+
33
+ model_name = 'team15_SAKDNNet'
34
+
35
+ model_path = os.path.join('model_zoo', model_name+'.pth')
36
+
37
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
38
+
39
+ from models.team15_SAKDNNet import SAKDNNet as net
40
+ model = net(in_nc=n_channels,config=[4,4,4,4,4,4,4],dim=64)
41
+
42
+ model.load_state_dict(torch.load(model_path), strict=True)
43
+ model.eval()
44
+ for k, v in model.named_parameters():
45
+ v.requires_grad = False
46
+
47
+ model = model.to(device)
48
+ img_N = util.uint2tensor4(img_U)
49
+ img_N = img_N.to(device)
50
+
51
+ img_DN = utils_model.inference(model, img_N, refield=64, min_size=512, mode=2)
52
+ img_DN = model(img_N)
53
+ img_DN = util.tensor2uint(img_DN)
54
+
55
+ col2.write("Denoised Image")
56
+ col2.image(img_DN)
57
+
58
+ #st.sidebar.markdown("\\n")
59
+
60
+ st.write("The method is included in NTIRE 2023 Image Denoising Challenge at CVPR 2023")
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ numpy
3
+ opencv-contrib-python
4
+ torchvision
5
+ einops
6
+ timm