Image_Denoising_Demo / models /team15_SAKDNNet.py
sunder-ali's picture
Upload team15_SAKDNNet.py
3d4805e
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
from einops.layers.torch import Rearrange
from timm.models.layers import trunc_normal_, DropPath
class SAST(nn.Module):
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
super(SAST, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.head_dim = head_dim
self.scale = self.head_dim ** -0.5
self.n_heads = input_dim//head_dim
self.window_size = window_size
self.type=type
self.embedding_layer = nn.Linear(self.input_dim, 3*self.input_dim, bias=True)
self.relative_position_params = nn.Parameter(torch.zeros((2 * window_size - 1)*(2 * window_size -1), self.n_heads))
self.linear = nn.Linear(self.input_dim, self.output_dim)
trunc_normal_(self.relative_position_params, std=.02)
self.relative_position_params = torch.nn.Parameter(self.relative_position_params.view(2*window_size-1, 2*window_size-1, self.n_heads).transpose(1,2).transpose(0,1))
def maskgen(self, h, w, p, shift):
maskatt = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
if self.type == 'W':
return maskatt
s = p - shift
maskatt[-1, :, :s, :, s:, :] = True
maskatt[-1, :, s:, :, :s, :] = True
maskatt[:, -1, :, :s, :, s:] = True
maskatt[:, -1, :, s:, :, :s] = True
maskatt = rearrange(maskatt, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
return maskatt
def forward(self, x):
if self.type!='W': x = torch.roll(x, shifts=(-(self.window_size//2), -(self.window_size//2)), dims=(1,2))
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
h_windows = x.size(1)
w_windows = x.size(2)
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
qkv = self.embedding_layer(x)
q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
if self.type != 'W':
maskatt = self.maskgen(h_windows, w_windows, self.window_size, shift=self.window_size//2)
sim = sim.masked_fill_(maskatt, float("-inf"))
probs = nn.functional.softmax(sim, dim=-1)
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
output = rearrange(output, 'h b w p c -> b w p (h c)')
output = self.linear(output)
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
if self.type!='W': output = torch.roll(output, shifts=(self.window_size//2, self.window_size//2), dims=(1,2))
return output
def relative_embedding(self):
cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
relation = cord[:, None, :] - cord[None, :, :] + self.window_size -1
return self.relative_position_params[:, relation[:,:,0].long(), relation[:,:,1].long()]
class DRFE(nn.Module):
def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
super(DRFE, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
assert type in ['W', 'SW']
self.type = type
if input_resolution <= window_size:
self.type = 'W'
self.ln1 = nn.LayerNorm(input_dim)
self.msa = SAST(input_dim, input_dim, head_dim, window_size, self.type)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.ln2 = nn.LayerNorm(input_dim)
self.mlp = nn.Sequential(
nn.Linear(input_dim, 4 * input_dim),
nn.GELU(),
nn.Linear(4 * input_dim, output_dim),
)
def forward(self, x):
x = x + self.drop_path(self.msa(self.ln1(x)))
x = x + self.drop_path(self.mlp(self.ln2(x)))
return x
class STCB(nn.Module):
def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
super(STCB, self).__init__()
self.conv_dim = conv_dim
self.trans_dim = trans_dim
self.head_dim = head_dim
self.window_size = window_size
self.drop_path = drop_path
self.type = type
self.input_resolution = input_resolution
assert self.type in ['W', 'SW']
if self.input_resolution <= self.window_size:
self.type = 'W'
self.trans_block = DRFE(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path, self.type, self.input_resolution)
self.conv1_1 = nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True)
self.conv1_2 = nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True)
self.conv_block = nn.Sequential(
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
nn.ReLU(True),
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
)
def forward(self, x):
conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
conv_x = self.conv_block(conv_x) + conv_x
trans_x = Rearrange('b c h w -> b h w c')(trans_x)
trans_x = self.trans_block(trans_x)
trans_x = Rearrange('b h w c -> b c h w')(trans_x)
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
x = x + res
return x
class SAKDNNet(nn.Module):
def __init__(self, in_nc=3, config=[2,2,2,2,2,2,2], dim=64, drop_path_rate=0.0, input_resolution=256):
super(SAKDNNet, self).__init__()
self.config = config
self.dim = dim
self.head_dim = 32
self.window_size = 8
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
begin = 0
self.m_down1 = [STCB(dim//2, dim//2, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution)
for i in range(config[0])] + \
[nn.Conv2d(dim, 2*dim, 2, 2, 0, bias=False)]
begin += config[0]
self.m_down2 = [STCB(dim, dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//2)
for i in range(config[1])] + \
[nn.Conv2d(2*dim, 4*dim, 2, 2, 0, bias=False)]
begin += config[1]
self.m_down3 = [STCB(2*dim, 2*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW',input_resolution//4)
for i in range(config[2])] + \
[nn.Conv2d(4*dim, 8*dim, 2, 2, 0, bias=False)]
begin += config[2]
self.m_body = [STCB(4*dim, 4*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//8)
for i in range(config[3])]
begin += config[3]
self.m_up3 = [nn.ConvTranspose2d(8*dim, 4*dim, 2, 2, 0, bias=False),] + \
[STCB(2*dim, 2*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW',input_resolution//4)
for i in range(config[4])]
begin += config[4]
self.m_up2 = [nn.ConvTranspose2d(4*dim, 2*dim, 2, 2, 0, bias=False),] + \
[STCB(dim, dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//2)
for i in range(config[5])]
begin += config[5]
self.m_up1 = [nn.ConvTranspose2d(2*dim, dim, 2, 2, 0, bias=False),] + \
[STCB(dim//2, dim//2, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution)
for i in range(config[6])]
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
self.m_head = nn.Sequential(*self.m_head)
self.m_down1 = nn.Sequential(*self.m_down1)
self.m_down2 = nn.Sequential(*self.m_down2)
self.m_down3 = nn.Sequential(*self.m_down3)
self.m_body = nn.Sequential(*self.m_body)
self.m_up3 = nn.Sequential(*self.m_up3)
self.m_up2 = nn.Sequential(*self.m_up2)
self.m_up1 = nn.Sequential(*self.m_up1)
self.m_tail = nn.Sequential(*self.m_tail)
def forward(self, x0):
h, w = x0.size()[-2:]
paddingBottom = int(np.ceil(h/64)*64-h)
paddingRight = int(np.ceil(w/64)*64-w)
x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
x1 = self.m_head(x0)
x2 = self.m_down1(x1)
x3 = self.m_down2(x2)
x4 = self.m_down3(x3)
x = self.m_body(x4)
x = self.m_up3(x+x4)
x = self.m_up2(x+x3)
x = self.m_up1(x+x2)
x = self.m_tail(x+x1)
x = x[..., :h, :w]
return x
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if __name__ == '__main__':
# torch.cuda.empty_cache()
net = SAKDNNet()
x = torch.randn((2, 3, 64, 128))
x = net(x)
print(x.shape)