Spaces:
Running
Running
import os | |
import math | |
import random | |
import numpy as np | |
import torch | |
import cv2 | |
from torchvision.utils import make_grid | |
from datetime import datetime | |
import matplotlib.pyplot as plt | |
#from mpl_toolkits.mplot3d import Axes3D | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif'] | |
def is_image_file(filename): | |
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) | |
def get_timestamp(): | |
return datetime.now().strftime('%y%m%d-%H%M%S') | |
def imshow(x, title=None, cbar=False, figsize=None): | |
plt.figure(figsize=figsize) | |
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') | |
if title: | |
plt.title(title) | |
if cbar: | |
plt.colorbar() | |
plt.show() | |
def surf(Z, cmap='rainbow', figsize=None): | |
plt.figure(figsize=figsize) | |
ax3 = plt.axes(projection='3d') | |
w, h = Z.shape[:2] | |
xx = np.arange(0,w,1) | |
yy = np.arange(0,h,1) | |
X, Y = np.meshgrid(xx, yy) | |
ax3.plot_surface(X,Y,Z,cmap=cmap) | |
plt.show() | |
def get_image_paths(dataroot): | |
paths = None | |
if isinstance(dataroot, str): | |
paths = sorted(_get_paths_from_images(dataroot)) | |
elif isinstance(dataroot, list): | |
paths = [] | |
for i in dataroot: | |
paths += sorted(_get_paths_from_images(i)) | |
return paths | |
def _get_paths_from_images(path): | |
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) | |
images = [] | |
for dirpath, _, fnames in sorted(os.walk(path)): | |
for fname in sorted(fnames): | |
if is_image_file(fname): | |
img_path = os.path.join(dirpath, fname) | |
images.append(img_path) | |
assert images, '{:s} has no valid image file'.format(path) | |
return images | |
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): | |
w, h = img.shape[:2] | |
patches = [] | |
if w > p_max and h > p_max: | |
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int)) | |
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int)) | |
w1.append(w-p_size) | |
h1.append(h-p_size) | |
for i in w1: | |
for j in h1: | |
patches.append(img[i:i+p_size, j:j+p_size,:]) | |
else: | |
patches.append(img) | |
return patches | |
def imssave(imgs, img_path): | |
img_name, ext = os.path.splitext(os.path.basename(img_path)) | |
for i, img in enumerate(imgs): | |
if img.ndim == 3: | |
img = img[:, :, [2, 1, 0]] | |
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_{:04d}'.format(i))+'.png') | |
cv2.imwrite(new_path, img) | |
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=512, p_overlap=96, p_max=800): | |
paths = get_image_paths(original_dataroot) | |
for img_path in paths: | |
img = imread_uint(img_path, n_channels=n_channels) | |
patches = patches_from_image(img, p_size, p_overlap, p_max) | |
imssave(patches, os.path.join(taget_dataroot, os.path.basename(img_path))) | |
def mkdir(path): | |
if not os.path.exists(path): | |
os.makedirs(path) | |
def mkdirs(paths): | |
if isinstance(paths, str): | |
mkdir(paths) | |
else: | |
for path in paths: | |
mkdir(path) | |
def mkdir_and_rename(path): | |
if os.path.exists(path): | |
new_name = path + '_archived_' + get_timestamp() | |
print('Path already exists. Rename it to [{:s}]'.format(new_name)) | |
os.rename(path, new_name) | |
os.makedirs(path) | |
def imread_uint(path, n_channels=3): | |
if n_channels == 1: | |
img = cv2.imread(path, 0) | |
img = np.expand_dims(img, axis=2) | |
elif n_channels == 3: | |
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) | |
if img.ndim == 2: | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) | |
else: | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return img | |
def imsave(img, img_path): | |
img = np.squeeze(img) | |
if img.ndim == 3: | |
img = img[:, :, [2, 1, 0]] | |
cv2.imwrite(img_path, img) | |
def imwrite(img, img_path): | |
img = np.squeeze(img) | |
if img.ndim == 3: | |
img = img[:, :, [2, 1, 0]] | |
cv2.imwrite(img_path, img) | |
def read_img(path): | |
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) | |
img = img.astype(np.float32) / 255. | |
if img.ndim == 2: | |
img = np.expand_dims(img, axis=2) | |
if img.shape[2] > 3: | |
img = img[:, :, :3] | |
return img | |
def uint2single(img): | |
return np.float32(img/255.) | |
def single2uint(img): | |
return np.uint8((img.clip(0, 1)*255.).round()) | |
def uint162single(img): | |
return np.float32(img/65535.) | |
def single2uint16(img): | |
return np.uint16((img.clip(0, 1)*65535.).round()) | |
def uint2tensor4(img): | |
if img.ndim == 2: | |
img = np.expand_dims(img, axis=2) | |
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) | |
def uint2tensor3(img): | |
if img.ndim == 2: | |
img = np.expand_dims(img, axis=2) | |
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.) | |
def tensor2uint(img): | |
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() | |
if img.ndim == 3: | |
img = np.transpose(img, (1, 2, 0)) | |
return np.uint8((img*255.0).round()) | |
def single2tensor3(img): | |
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() | |
def single2tensor4(img): | |
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0) | |
def tensor2single(img): | |
img = img.data.squeeze().float().cpu().numpy() | |
if img.ndim == 3: | |
img = np.transpose(img, (1, 2, 0)) | |
return img | |
def tensor2single3(img): | |
img = img.data.squeeze().float().cpu().numpy() | |
if img.ndim == 3: | |
img = np.transpose(img, (1, 2, 0)) | |
elif img.ndim == 2: | |
img = np.expand_dims(img, axis=2) | |
return img | |
def single2tensor5(img): | |
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0) | |
def single32tensor5(img): | |
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) | |
def single42tensor4(img): | |
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() | |
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): | |
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp | |
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] | |
n_dim = tensor.dim() | |
if n_dim == 4: | |
n_img = len(tensor) | |
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() | |
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR | |
elif n_dim == 3: | |
img_np = tensor.numpy() | |
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR | |
elif n_dim == 2: | |
img_np = tensor.numpy() | |
else: | |
raise TypeError( | |
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) | |
if out_type == np.uint8: | |
img_np = (img_np * 255.0).round() | |
# Important. Unlike matlab, numpy.uint8() WILL NOT round by default. | |
return img_np.astype(out_type) | |
def augment_img(img, mode=0): | |
if mode == 0: | |
return img | |
elif mode == 1: | |
return np.flipud(np.rot90(img)) | |
elif mode == 2: | |
return np.flipud(img) | |
elif mode == 3: | |
return np.rot90(img, k=3) | |
elif mode == 4: | |
return np.flipud(np.rot90(img, k=2)) | |
elif mode == 5: | |
return np.rot90(img) | |
elif mode == 6: | |
return np.rot90(img, k=2) | |
elif mode == 7: | |
return np.flipud(np.rot90(img, k=3)) | |
def augment_img_tensor4(img, mode=0): | |
if mode == 0: | |
return img | |
elif mode == 1: | |
return img.rot90(1, [2, 3]).flip([2]) | |
elif mode == 2: | |
return img.flip([2]) | |
elif mode == 3: | |
return img.rot90(3, [2, 3]) | |
elif mode == 4: | |
return img.rot90(2, [2, 3]).flip([2]) | |
elif mode == 5: | |
return img.rot90(1, [2, 3]) | |
elif mode == 6: | |
return img.rot90(2, [2, 3]) | |
elif mode == 7: | |
return img.rot90(3, [2, 3]).flip([2]) | |
def augment_img_tensor(img, mode=0): | |
img_size = img.size() | |
img_np = img.data.cpu().numpy() | |
if len(img_size) == 3: | |
img_np = np.transpose(img_np, (1, 2, 0)) | |
elif len(img_size) == 4: | |
img_np = np.transpose(img_np, (2, 3, 1, 0)) | |
img_np = augment_img(img_np, mode=mode) | |
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) | |
if len(img_size) == 3: | |
img_tensor = img_tensor.permute(2, 0, 1) | |
elif len(img_size) == 4: | |
img_tensor = img_tensor.permute(3, 2, 0, 1) | |
return img_tensor.type_as(img) | |
def augment_img_np3(img, mode=0): | |
if mode == 0: | |
return img | |
elif mode == 1: | |
return img.transpose(1, 0, 2) | |
elif mode == 2: | |
return img[::-1, :, :] | |
elif mode == 3: | |
img = img[::-1, :, :] | |
img = img.transpose(1, 0, 2) | |
return img | |
elif mode == 4: | |
return img[:, ::-1, :] | |
elif mode == 5: | |
img = img[:, ::-1, :] | |
img = img.transpose(1, 0, 2) | |
return img | |
elif mode == 6: | |
img = img[:, ::-1, :] | |
img = img[::-1, :, :] | |
return img | |
elif mode == 7: | |
img = img[:, ::-1, :] | |
img = img[::-1, :, :] | |
img = img.transpose(1, 0, 2) | |
return img | |
def augment_imgs(img_list, hflip=True, rot=True): | |
hflip = hflip and random.random() < 0.5 | |
vflip = rot and random.random() < 0.5 | |
rot90 = rot and random.random() < 0.5 | |
def _augment(img): | |
if hflip: | |
img = img[:, ::-1, :] | |
if vflip: | |
img = img[::-1, :, :] | |
if rot90: | |
img = img.transpose(1, 0, 2) | |
return img | |
return [_augment(img) for img in img_list] | |
def modcrop(img_in, scale): | |
# img_in: Numpy, HWC or HW | |
img = np.copy(img_in) | |
if img.ndim == 2: | |
H, W = img.shape | |
H_r, W_r = H % scale, W % scale | |
img = img[:H - H_r, :W - W_r] | |
elif img.ndim == 3: | |
H, W, C = img.shape | |
H_r, W_r = H % scale, W % scale | |
img = img[:H - H_r, :W - W_r, :] | |
else: | |
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) | |
return img | |
def shave(img_in, border=0): | |
# img_in: Numpy, HWC or HW | |
img = np.copy(img_in) | |
h, w = img.shape[:2] | |
img = img[border:h-border, border:w-border] | |
return img | |
def rgb2ycbcr(img, only_y=True): | |
in_img_type = img.dtype | |
img.astype(np.float32) | |
if in_img_type != np.uint8: | |
img *= 255. | |
# convert | |
if only_y: | |
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 | |
else: | |
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], | |
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] | |
if in_img_type == np.uint8: | |
rlt = rlt.round() | |
else: | |
rlt /= 255. | |
return rlt.astype(in_img_type) | |
def ycbcr2rgb(img): | |
in_img_type = img.dtype | |
img.astype(np.float32) | |
if in_img_type != np.uint8: | |
img *= 255. | |
# convert | |
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], | |
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] | |
rlt = np.clip(rlt, 0, 255) | |
if in_img_type == np.uint8: | |
rlt = rlt.round() | |
else: | |
rlt /= 255. | |
return rlt.astype(in_img_type) | |
def bgr2ycbcr(img, only_y=True): | |
in_img_type = img.dtype | |
img.astype(np.float32) | |
if in_img_type != np.uint8: | |
img *= 255. | |
# convert | |
if only_y: | |
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 | |
else: | |
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], | |
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] | |
if in_img_type == np.uint8: | |
rlt = rlt.round() | |
else: | |
rlt /= 255. | |
return rlt.astype(in_img_type) | |
def channel_convert(in_c, tar_type, img_list): | |
# conversion among BGR, gray and y | |
if in_c == 3 and tar_type == 'gray': # BGR to gray | |
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] | |
return [np.expand_dims(img, axis=2) for img in gray_list] | |
elif in_c == 3 and tar_type == 'y': # BGR to y | |
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] | |
return [np.expand_dims(img, axis=2) for img in y_list] | |
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR | |
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] | |
else: | |
return img_list | |
def calculate_psnr(img1, img2, border=0): | |
if not img1.shape == img2.shape: | |
raise ValueError('Input images must have the same dimensions.') | |
h, w = img1.shape[:2] | |
img1 = img1[border:h-border, border:w-border] | |
img2 = img2[border:h-border, border:w-border] | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
mse = np.mean((img1 - img2)**2) | |
if mse == 0: | |
return float('inf') | |
return 20 * math.log10(255.0 / math.sqrt(mse)) | |
def calculate_ssim(img1, img2, border=0): | |
if not img1.shape == img2.shape: | |
raise ValueError('Input images must have the same dimensions.') | |
h, w = img1.shape[:2] | |
img1 = img1[border:h-border, border:w-border] | |
img2 = img2[border:h-border, border:w-border] | |
if img1.ndim == 2: | |
return ssim(img1, img2) | |
elif img1.ndim == 3: | |
if img1.shape[2] == 3: | |
ssims = [] | |
for i in range(3): | |
ssims.append(ssim(img1[:,:,i], img2[:,:,i])) | |
return np.array(ssims).mean() | |
elif img1.shape[2] == 1: | |
return ssim(np.squeeze(img1), np.squeeze(img2)) | |
else: | |
raise ValueError('Wrong input image dimensions.') | |
def ssim(img1, img2): | |
C1 = (0.01 * 255)**2 | |
C2 = (0.03 * 255)**2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid | |
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
mu1_sq = mu1**2 | |
mu2_sq = mu2**2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq | |
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * | |
(sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def _blocking_effect_factor(im): | |
block_size = 8 | |
block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8) | |
block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8) | |
horizontal_block_difference = ( | |
(im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum( | |
3).sum(2).sum(1) | |
vertical_block_difference = ( | |
(im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum( | |
2).sum(1) | |
nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions) | |
nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions) | |
horizontal_nonblock_difference = ( | |
(im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum( | |
3).sum(2).sum(1) | |
vertical_nonblock_difference = ( | |
(im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum( | |
3).sum(2).sum(1) | |
n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1) | |
n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1) | |
boundary_difference = (horizontal_block_difference + vertical_block_difference) / ( | |
n_boundary_horiz + n_boundary_vert) | |
n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horiz | |
n_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vert | |
nonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / ( | |
n_nonboundary_horiz + n_nonboundary_vert) | |
scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]])) | |
bef = scaler * (boundary_difference - nonboundary_difference) | |
bef[boundary_difference <= nonboundary_difference] = 0 | |
return bef | |
def calculate_psnrb(img1, img2, border=0): | |
if not img1.shape == img2.shape: | |
raise ValueError('Input images must have the same dimensions.') | |
if img1.ndim == 2: | |
img1, img2 = np.expand_dims(img1, 2), np.expand_dims(img2, 2) | |
h, w = img1.shape[:2] | |
img1 = img1[border:h-border, border:w-border] | |
img2 = img2[border:h-border, border:w-border] | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255. | |
img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255. | |
total = 0 | |
for c in range(img1.shape[1]): | |
mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none') | |
bef = _blocking_effect_factor(img1[:, c:c + 1, :, :]) | |
mse = mse.view(mse.shape[0], -1).mean(1) | |
total += 10 * torch.log10(1 / (mse + bef)) | |
return float(total) / img1.shape[1] | |
def cubic(x): | |
absx = torch.abs(x) | |
absx2 = absx**2 | |
absx3 = absx**3 | |
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ | |
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) | |
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): | |
if (scale < 1) and (antialiasing): | |
kernel_width = kernel_width / scale | |
x = torch.linspace(1, out_length, out_length) | |
u = x / scale + 0.5 * (1 - 1 / scale) | |
left = torch.floor(u - kernel_width / 2) | |
P = math.ceil(kernel_width) + 2 | |
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( | |
1, P).expand(out_length, P) | |
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices | |
if (scale < 1) and (antialiasing): | |
weights = scale * cubic(distance_to_center * scale) | |
else: | |
weights = cubic(distance_to_center) | |
weights_sum = torch.sum(weights, 1).view(out_length, 1) | |
weights = weights / weights_sum.expand(out_length, P) | |
weights_zero_tmp = torch.sum((weights == 0), 0) | |
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): | |
indices = indices.narrow(1, 1, P - 2) | |
weights = weights.narrow(1, 1, P - 2) | |
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): | |
indices = indices.narrow(1, 0, P - 2) | |
weights = weights.narrow(1, 0, P - 2) | |
weights = weights.contiguous() | |
indices = indices.contiguous() | |
sym_len_s = -indices.min() + 1 | |
sym_len_e = indices.max() - in_length | |
indices = indices + sym_len_s - 1 | |
return weights, indices, int(sym_len_s), int(sym_len_e) | |
def imresize(img, scale, antialiasing=True): | |
need_squeeze = True if img.dim() == 2 else False | |
if need_squeeze: | |
img.unsqueeze_(0) | |
in_C, in_H, in_W = img.size() | |
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) | |
kernel_width = 4 | |
kernel = 'cubic' | |
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( | |
in_H, out_H, scale, kernel, kernel_width, antialiasing) | |
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( | |
in_W, out_W, scale, kernel, kernel_width, antialiasing) | |
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) | |
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) | |
sym_patch = img[:, :sym_len_Hs, :] | |
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) | |
sym_patch = img[:, -sym_len_He:, :] | |
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) | |
out_1 = torch.FloatTensor(in_C, out_H, in_W) | |
kernel_width = weights_H.size(1) | |
for i in range(out_H): | |
idx = int(indices_H[i][0]) | |
for j in range(out_C): | |
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) | |
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) | |
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) | |
sym_patch = out_1[:, :, :sym_len_Ws] | |
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(2, inv_idx) | |
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) | |
sym_patch = out_1[:, :, -sym_len_We:] | |
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(2, inv_idx) | |
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) | |
out_2 = torch.FloatTensor(in_C, out_H, out_W) | |
kernel_width = weights_W.size(1) | |
for i in range(out_W): | |
idx = int(indices_W[i][0]) | |
for j in range(out_C): | |
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i]) | |
if need_squeeze: | |
out_2.squeeze_() | |
return out_2 | |
def imresize_np(img, scale, antialiasing=True): | |
img = torch.from_numpy(img) | |
need_squeeze = True if img.dim() == 2 else False | |
if need_squeeze: | |
img.unsqueeze_(2) | |
in_H, in_W, in_C = img.size() | |
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) | |
kernel_width = 4 | |
kernel = 'cubic' | |
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( | |
in_H, out_H, scale, kernel, kernel_width, antialiasing) | |
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( | |
in_W, out_W, scale, kernel, kernel_width, antialiasing) | |
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) | |
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) | |
sym_patch = img[:sym_len_Hs, :, :] | |
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(0, inv_idx) | |
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) | |
sym_patch = img[-sym_len_He:, :, :] | |
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(0, inv_idx) | |
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) | |
out_1 = torch.FloatTensor(out_H, in_W, in_C) | |
kernel_width = weights_H.size(1) | |
for i in range(out_H): | |
idx = int(indices_H[i][0]) | |
for j in range(out_C): | |
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) | |
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) | |
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) | |
sym_patch = out_1[:, :sym_len_Ws, :] | |
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) | |
sym_patch = out_1[:, -sym_len_We:, :] | |
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) | |
out_2 = torch.FloatTensor(out_H, out_W, in_C) | |
kernel_width = weights_W.size(1) | |
for i in range(out_W): | |
idx = int(indices_W[i][0]) | |
for j in range(out_C): | |
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) | |
if need_squeeze: | |
out_2.squeeze_() | |
return out_2.numpy() | |
if __name__ == '__main__': | |
img = imread_uint('test.bmp', 3) | |