text / app.py
sundea's picture
Update app.py
fae15ea
raw
history blame
873 Bytes
import os
import gradio as gr
import torch
from transformers.models.bert import BertTokenizer, BertForSequenceClassification
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("sundea/text1")
model = AutoModelForSequenceClassification.from_pretrained("sundea/text1")
model.eval()
def get_output(text):
output=[]
model_input = tokenizer(text, return_tensors="pt", padding=True)
model_output = model(**model_input, return_dict=False)
prediction = torch.argmax(model_output[0].cpu(), dim=-1)
prediction = [p.item() for p in prediction]
for i in range(len(prediction)):
if prediction[i]==0:
output.append("消极")
else:
output.append('积极')
return output
demo=gr.Interface(fn=get_output,inputs='text',outputs='text')
demo.launch()