Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
from importlib import import_module | |
import gradio as gr | |
from tqdm import tqdm | |
import models.TextCNN | |
import torch | |
import pickle as pkl | |
from utils import build_dataset | |
classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', | |
'娱乐类'] | |
MAX_VOCAB_SIZE = 10000 # 词表长度限制 | |
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号 | |
def build_vocab(file_path, tokenizer, max_size, min_freq): | |
vocab_dic = {} | |
with open(file_path, 'r', encoding='UTF-8') as f: | |
for line in tqdm(f): | |
lin = line.strip() | |
if not lin: | |
continue | |
content = lin.split('\t')[0] | |
for word in tokenizer(content): | |
vocab_dic[word] = vocab_dic.get(word, 0) + 1 | |
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[ | |
:max_size] | |
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} | |
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) | |
return vocab_dic | |
def greet(text): | |
parser = argparse.ArgumentParser(description='Chinese Text Classification') | |
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char') | |
args = parser.parse_args() | |
model_name = 'TextCNN' | |
dataset = 'THUCNews' # 数据集 | |
embedding = 'embedding_SougouNews.npz' | |
x = import_module('models.' + model_name) | |
config = x.Config(dataset, embedding) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = models.TextCNN.Model(config) | |
# vocab, train_data, dev_data, test_data = build_dataset(config, args.word) | |
model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu'))) | |
model.to(device) | |
model.eval() | |
tokenizer = lambda x: [y for y in x] # char-level | |
if os.path.exists(config.vocab_path): | |
vocab = pkl.load(open(config.vocab_path, 'rb')) | |
else: | |
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) | |
pkl.dump(vocab, open(config.vocab_path, 'wb')) | |
# print(f"Vocab size: {len(vocab)}") | |
# content='时评:“国学小天才”录取缘何少佳话' | |
content = text | |
words_line = [] | |
token = tokenizer(content) | |
seq_len = len(token) | |
pad_size = 32 | |
contents = [] | |
if pad_size: | |
if len(token) < pad_size: | |
token.extend([PAD] * (pad_size - len(token))) | |
else: | |
token = token[:pad_size] | |
seq_len = pad_size | |
# word to id | |
for word in token: | |
words_line.append(vocab.get(word, vocab.get(UNK))) | |
contents.append((words_line, seq_len)) | |
# print(words_line) | |
# input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension | |
x = torch.LongTensor([_[0] for _ in contents]).to(device) | |
# pad前的长度(超过pad_size的设为pad_size) | |
seq_len = torch.LongTensor([_[1] for _ in contents]).to(device) | |
input = (x, seq_len) | |
# print(input) | |
with torch.no_grad(): | |
output = model(input) | |
predic = torch.max(output.data, 1)[1].cpu().numpy() | |
# print(predic) | |
# print('类别为:{}'.format(classes[predic[0]])) | |
return classes[predic[0]] | |
examples = [ | |
["苹果发布iPhone18"], | |
["小明高考考了700分"], | |
["英雄联盟世界赛即将开始"] | |
] | |
demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app", | |
layout="vertical", description="This is a demo for text classification.",examples=examples) | |
demo.launch() | |
# |