sundea's picture
Update app.py
879defd
raw
history blame
3.8 kB
import argparse
import os
from importlib import import_module
import gradio as gr
from tqdm import tqdm
import models.TextCNN
import torch
import pickle as pkl
from utils import build_dataset
classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
'娱乐类']
MAX_VOCAB_SIZE = 10000 # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
def build_vocab(file_path, tokenizer, max_size, min_freq):
vocab_dic = {}
with open(file_path, 'r', encoding='UTF-8') as f:
for line in tqdm(f):
lin = line.strip()
if not lin:
continue
content = lin.split('\t')[0]
for word in tokenizer(content):
vocab_dic[word] = vocab_dic.get(word, 0) + 1
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
:max_size]
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
return vocab_dic
def greet(text):
parser = argparse.ArgumentParser(description='Chinese Text Classification')
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
args = parser.parse_args()
model_name = 'TextCNN'
dataset = 'THUCNews' # 数据集
embedding = 'embedding_SougouNews.npz'
x = import_module('models.' + model_name)
config = x.Config(dataset, embedding)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.TextCNN.Model(config)
# vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
model.to(device)
model.eval()
tokenizer = lambda x: [y for y in x] # char-level
if os.path.exists(config.vocab_path):
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(vocab, open(config.vocab_path, 'wb'))
# print(f"Vocab size: {len(vocab)}")
# content='时评:“国学小天才”录取缘何少佳话'
content = text
words_line = []
token = tokenizer(content)
seq_len = len(token)
pad_size = 32
contents = []
if pad_size:
if len(token) < pad_size:
token.extend([PAD] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
# word to id
for word in token:
words_line.append(vocab.get(word, vocab.get(UNK)))
contents.append((words_line, seq_len))
# print(words_line)
# input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
x = torch.LongTensor([_[0] for _ in contents]).to(device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
input = (x, seq_len)
# print(input)
with torch.no_grad():
output = model(input)
predic = torch.max(output.data, 1)[1].cpu().numpy()
# print(predic)
# print('类别为:{}'.format(classes[predic[0]]))
return classes[predic[0]]
examples = [
["苹果发布iPhone18"],
["小明高考考了700分"],
["英雄联盟世界赛即将开始"]
]
demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app",
layout="vertical", description="This is a demo for text classification.",examples=examples)
demo.launch()
#